Spelling suggestions: "subject:"are variant analysis"" "subject:"care variant analysis""
1 |
Genetic studies of cardiometabolic traitsRiveros Mckay Aguilera, Fernando January 2019 (has links)
Diet and lifestyle have changed dramatically in the last few decades, leading to an increase in prevalence of obesity, defined as a body mass index >30Kg/m2, dyslipidaemias (defined as abnormal lipid profiles) and type 2 diabetes (T2D). Together, these cardiometabolic traits and diseases, have contributed to the increased burden of cardiovascular disease, the leading cause of death in Western societies. Complex traits and diseases, such as cardiometabolic traits, arise as a result of the interaction between an individual's predisposing genetic makeup and a permissive environment. Since 2007, genome-wide association studies (GWAS) have been successfully applied to complex traits leading to the discovery of thousands of trait-associated variants. Nonetheless, much is still to be understood regarding the genetic architecture of these traits, as well as their underlying biology. This thesis aims to further explore the genetic architecture of cardiometabolic traits by using complementary approaches with greater genetic and phenotype resolution, ranging from studying clinically ascertained extreme phenotypes, deep molecular profiling, or sequence level data. In chapter 2, I investigated the genetic architecture of healthy human thinness (N=1,471) and contrasted it to that of severe early onset childhood obesity (N=1,456). I demonstrated that healthy human thinness, like severe obesity, is a heritable trait, with a polygenic component. I identified a novel BMI-associated locus at PKHD1, and found evidence of association at several loci that had only been discovered using large cohorts with >40,000 individuals demonstrating the power gains in studying clinical extreme phenotypes. In chapter 3, I coupled high-resolution nuclear magnetic resonance (NMR) measurements in healthy blood donors, with next-generation sequencing to establish the role of rare coding variation in circulating metabolic biomarker biology. In gene-based analysis, I identified ACSL1, MYCN, FBXO36 and B4GALNT3 as novel gene-trait associations (P < 2.5x10-6). I also found a novel link between loss-of-function mutations in the "regulation of the pyruvate dehydrogenase (PDH) complex" pathway and intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL) and circulating cholesterol measurements. In addition, I demonstrated that rare "protective" variation in lipoprotein metabolism genes was present in the lower tails of four measurements which are CVD risk factors in this healthy population, demonstrating a role for rare coding variation and the extremes of healthy phenotypes. In chapter 4, I performed a genome-wide association study of fructosamine, a measurement of total serum protein glycation which is useful to monitor rapid changes in glycaemic levels after treatment, as it reflects average glycaemia over 2-3 weeks. In contrast to HbA1c, which reflects average glucose concentration over the life-span of the erythrocyte (~3 months), fructosamine levels are not predicted to be influenced by factors affecting the erythrocyte. Surprisingly, I found that in this dataset fructosamine had low heritability (2% vs 20% for HbA1c), and was poorly correlated with HbA1c and other glycaemic traits. Despite this, I found two loci previously associated with glycaemic or albumin traits, G6PC2 and FCGRT respectively (P < 5x10-8), associated with fructosamine suggesting shared genetic influence. Altogether my results demonstrate the utility of higher resolution genotype and phenotype data in further elucidating the genetic architecture of a range of cardiometabolic traits, and the power advantages of study designs that focus on individuals at the extremes of phenotype distribution. As large cohorts and national biobanks with sequencing and deep multi-dimensional phenotyping become more prevalent, we will be moving closer to understanding the multiple aetiological mechanisms leading to CVD, and subsequently improve diagnosis and treatment of these conditions.
|
2 |
Exploiting family history in genetic analysis of rare variantsWang, Yanbing 14 March 2022 (has links)
Genetic association analyses have successfully identified thousands of genetic variants contributing to complex disease susceptibility. However, these discoveries do not explain the full heritability of many diseases, due to the limited statistical power to detect loci with small effects, especially in regions with rare variants. The development of new and powerful methods is necessary to fully characterize the underlying genetic basis of complex diseases. Family history (FH) contains information on the disease status of un-genotyped relatives, which is related to the genotypes of probands at disease loci. Exploiting available FH in relatives could potentially enhance the ability to identify associations by increasing sample size. Many studies have very low power for genetic research in late-onset diseases because younger participants do not contribute a sufficient number of cases and older patients are more likely deceased without genotypes. Genetic association studies relying on cases and controls need to progress by incorporating additional information from FH to expand genetic research.
This dissertation overcomes these challenges and opens up a new paradigm in genetic research. The first chapter summarizes relevant methods used in this dissertation. In the second chapter, we develop novel methods to exploit the availability of FH in aggregation unit-based test, which have greater power than other existing methods that do not incorporate FH, while maintaining a correct type I error. In the third chapter, we develop methods to exploit FH while adjusting for relatedness using the generalized linear mixed effect models. Such adjustment allows the methods to have well-controlled type I error and maintain the highest sample size because there is no need to restrict the analysis to an unrelated subset in family studies. We demonstrate the flexibility and validity of the methods to incorporate FH from various relatives. The methods presented in the fourth chapter overcome the issue of inflated type I error caused by extremely unbalanced case-control ratio. We propose robust versions of the methods developed in the second and third chapters, which can provide more accurate results for unbalanced study designs. Availability of these novel methods will facilitate the identification of rare variants associated with complex traits.
|
3 |
Statistical methods for genetic association studies: detecting gene x environment interaction in rare variant analysisLim, Elise 05 February 2021 (has links)
Investigators have discovered thousands of genetic variants associated with various traits using genome-wide association studies (GWAS). These discoveries have substantially improved our understanding of the genetic architecture of many complex traits. Despite the striking success, these trait-associated loci collectively explain relatively little of disease risk. Many reasons for this unexplained heritability have been suggested and two understudied components are hypothesized to have an impact in complex disease etiology: rare variants and gene-environment (GE) interactions. Advances in next generation sequencing have offered the opportunity to comprehensively investigate the genetic contribution of rare variants on complex traits. Such diseases are multifactorial, suggesting an interplay of both genetics and environmental factors, but most GWAS have focused on the main effects of genetic variants and disregarded GE interactions. In this dissertation, we develop statistical methods to detect GE interactions for rare variant analysis for various types of outcomes in both independent and related samples. We leverage the joint information across a set of rare variants and implement variance component score tests to reduce the computational burden. First, we develop a GE interaction test for rare variants for binary and continuous traits in related individuals, which avoids having to restrict to unrelated individuals and thereby retaining more samples. Next, we propose a method to test GE interactions in rare variants for time-to-event outcomes. Rare variant tests for survival outcomes have been underdeveloped, despite their importance in medical studies. We use a shrinkage method to impose a ridge penalty on the genetic main effects to deal with potential multicollinearity. Finally, we compare different types of penalties, such as least absolute shrinkage selection operator and elastic net regularization, to examine the performance of our second method under various simulation scenarios. We illustrate applications of the proposed methods to detect gene x smoking interaction influencing body mass index and time-to-fracture in the Framingham Heart Study. Our proposed methods can be readily applied to a wide range of phenotypes and various genetic epidemiologic studies, thereby providing insight into biological mechanisms of complex diseases, identifying high-penetrance subgroups, and eventually leading to the development of better diagnostics and therapeutic interventions.
|
4 |
Patterns of symptoms in major depressive disorder and genetics of the disorder using low-pass sequencing dataLi, Yihan January 2013 (has links)
My thesis aims at identifying both genetic and environmental causes of major depressive disorder (MDD), using a large case-control study: 6,000 Chinese women with recurrent MDD and 6,000 controls. One of the major challenges for conducting genetic research on MDD is disease heterogeneity. The first question addressed is how different MDD is from highly comorbid anxiety disorders. I examine how anxiety disorders predict clinical features of depression and the degree of heterogeneity in their predictive pattern. The second question addressed is whether clinically defined MDD is a single disorder, or whether it consists of multiple subtypes. Results are then compared with and interpreted in the context of Western studies. Furthermore, latent class analysis and factor analysis results are also used in association analysis to explore more genetically homogeneous subtypes. Genetic data were derived using a novel strategy, low pass whole genome sequence analysis. Using genotypes imputed from the sequence data, I show that a cluster of single nucleotide polymorphisms (SNPs) is significantly associated with a binary disease phenotype including only cases with = 4 episodes of MDD, suggesting that recurrence might be an indication of genetic predisposition. The third issue examined is the contribution of rare variants to disease susceptibility. Again using sparse sequence data, I identified exonic sequence variants and performed gene-based analysis by comparing the number of variants between cases and controls in every gene. Furthermore I performed gene enrichment test by combining P values of SNP association tests at different minor allele frequency ranges. Overall, I did not find convincing evidence that rare variants aggregately contribute to disease susceptibility. However, the gene-based analysis resulted in an unexpected finding: cases have an excess of variants in all thirteen-protein coding mitochondrial genes, which was due to copy number differences in the mitochondrial genome. Both human phenotypic data as well as mice experimental data show that the increase in the mitochondrial copy number in cases is due to chronic stress.
|
Page generated in 0.101 seconds