• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 29
  • 29
  • 9
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of ras isoform activation by ras guanine nucleotide exchange factors /

Clyde-Smith, Jodi. January 2002 (has links) (PDF)
Thesis (Ph. D.)--University of Queensland, 2002. / Includes bibliographical references.
2

Expression of RAs-related Nuclear (RAN) protein in breast cancer

Chan, Yuk-shing., 陳旭勝. January 2010 (has links)
published_or_final_version / Pathology / Master / Master of Medical Sciences
3

An Investigation of the interaction of Ras with Cell membranes /

Roy, Sandrine. January 2001 (has links) (PDF)
Thesis (Ph. D.)--University of Queensland, 2002. / Includes bibliographical references.
4

Role of the Rab11 pathway in influenza virus assembly and budding

Bruce, Emily Adaline January 2012 (has links)
No description available.
5

The function of the signaling protein Ras guanine releasing protein 4 (RasGRP4) in human mast cells

Katsoulotos, Gregory Peter, St George Clinical School, UNSW January 2006 (has links)
Mast cells have been implicated in the pathogenesis of both atopic and non-atopic asthma. Ras guanine nucleotide-releasing protein 4 (RasGRP4) is a mast cell-restricted guanine nucleotide exchange factor and diacylglycerol (DAG)/ phorbol ester receptor whose function has not been deduced. RT-PCR analysis of 40 asthmatic patients and 40 non-asthmatic controls demonstrated a higher hRasGRP4 mRNA expression in a subgroup of the asthmatics. A RasGRP4-defective variant of the human mast cell line HMC-1 was used to create stable clones expressing green fluorescent protein-labeled human RasGRP4 for monitoring the movement of this signaling protein inside mast cells before and after exposure to phorbol-12-myristate 13-acetate (PMA) and for evaluating the protein???s ability to control the development, phenotype, and function of mast cells. Transcript-profiling approaches revealed hRasGRP4 constitutively regulates the expression of numerous genes in the HMC-1 cell line. For example, expression of hRasGRP4 in HMC-1 cells substantially decreased GATA-1 levels without altering GATA-2 levels, suggesting that hRasGRP4 regulates mast cell commitment of multipotential progenitors in part by controlling the intracellular levels of at least one lineage-dependent transcription factor for hematopoietic cells. hRasGRP4 resided primarily in the cytosol before HMC-1 cells were stimulated with PMA. After exposure to PMA, hRasGRP4 translocated to the inner leaflet of the cell???s plasma membrane and then to perinuclear and Golgi compartments. Extracellular signal-regulated kinases 1 and 2 were activated during this translocation process, and the PMA-treated cells transiently increased their expression of the transcripts encoding the interleukin 13 receptor IL-13R??2 and numerous other proteins. The accumulated data in our mast cell model suggest hRasGRP4 translocates to various intracellular compartments via its DAG/PMA-binding domain to regulate those signaling pathways that allow mast cells to respond quickly to changes in their tissue microenvironments.
6

The function of the signaling protein Ras guanine releasing protein 4 (RasGRP4) in human mast cells

Katsoulotos, Gregory Peter, St George Clinical School, UNSW January 2006 (has links)
Mast cells have been implicated in the pathogenesis of both atopic and non-atopic asthma. Ras guanine nucleotide-releasing protein 4 (RasGRP4) is a mast cell-restricted guanine nucleotide exchange factor and diacylglycerol (DAG)/ phorbol ester receptor whose function has not been deduced. RT-PCR analysis of 40 asthmatic patients and 40 non-asthmatic controls demonstrated a higher hRasGRP4 mRNA expression in a subgroup of the asthmatics. A RasGRP4-defective variant of the human mast cell line HMC-1 was used to create stable clones expressing green fluorescent protein-labeled human RasGRP4 for monitoring the movement of this signaling protein inside mast cells before and after exposure to phorbol-12-myristate 13-acetate (PMA) and for evaluating the protein???s ability to control the development, phenotype, and function of mast cells. Transcript-profiling approaches revealed hRasGRP4 constitutively regulates the expression of numerous genes in the HMC-1 cell line. For example, expression of hRasGRP4 in HMC-1 cells substantially decreased GATA-1 levels without altering GATA-2 levels, suggesting that hRasGRP4 regulates mast cell commitment of multipotential progenitors in part by controlling the intracellular levels of at least one lineage-dependent transcription factor for hematopoietic cells. hRasGRP4 resided primarily in the cytosol before HMC-1 cells were stimulated with PMA. After exposure to PMA, hRasGRP4 translocated to the inner leaflet of the cell???s plasma membrane and then to perinuclear and Golgi compartments. Extracellular signal-regulated kinases 1 and 2 were activated during this translocation process, and the PMA-treated cells transiently increased their expression of the transcripts encoding the interleukin 13 receptor IL-13R??2 and numerous other proteins. The accumulated data in our mast cell model suggest hRasGRP4 translocates to various intracellular compartments via its DAG/PMA-binding domain to regulate those signaling pathways that allow mast cells to respond quickly to changes in their tissue microenvironments.
7

Purification and characterization of a protein palmitoyltransferase that acts on H-Ras protein and on a C-terminal N-Ras peptide /

Liu, Li. January 1996 (has links)
Thesis (Ph. D.)--University of Washington, 1996. / Vita. Includes bibliographical references (leaves [123]-140).
8

Ras and transformation of the colonic epithelium functional differences, similarities, and cooperation between Ras family members /

Keller, Jeffrey W. January 2006 (has links)
Thesis (Ph. D. in Cell and Developmental Biology)--Vanderbilt University, Aug. 2006. / Title from title screen. Includes bibliographical references.
9

Network analysis of oncogenic Ras activation /

Stites, Edward Cooper. January 2008 (has links)
Thesis (Ph. D.)--University of Virginia, 2008. / Includes bibliographical references. Also available online through Digital Dissertations.
10

Regulation of cell growth and cell identity by Ras 1 in the developing Drosophila melanogaster wing /

Prober, David Aaron. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 132-151).

Page generated in 0.0718 seconds