• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

How the manipulation of the Ras homolog enriched in striatum alters the behavioral and molecular progression of Huntington’s disease

Lee, Franklin A 18 December 2015 (has links)
Huntington’s disease is an incurable, progressive neurological disorder characterized by loss of motor control, psychiatric dysfunction, and eventual dystonia leading to death. Despite the fact that this disorder is caused by a mutation in one single gene, there is no cure. The mutant Huntingtin (mHtt) protein is expressed ubiquitously throughout the brain but frank cell death is limited to the striatum. Recent work has suggested that Rhes, Ras homolog enriched in striatum, which is selectively expressed in the striatum, may play a role in Huntington’s disease neuropathology. In vitro studies have shown Rhes to be an E3 ligase for the post-translational modification protein SUMO. Rhes increases binding of SUMO to mHtt which competes for the same binding site as Ubiquitin. SUMOylation of mHtt leads to disaggregation and cellular death, whereas ubiquitination leads to aggregation and cellular protection. In a previous study we showed that deletion of Rhes caused a decrease in the Huntington’s disease phenotype in mice. We hypothesized that mice lacking Rhes would also show increased aggregation in the striatum and this increased aggregation would correlate in a rescue of behavioral symptoms. Despite the prior in vitro and in vivo evidence, deletion of Rhes in vivo did not alter the aggregation of mHtt in the striatum of mice however deletion of Rhes still showed a rescue from the diseased phenotype. This result would indicate that deletion of Rhes alters the neurobehavioral phenotype of Huntington’s disease through a different pathway than promoting aggregation in striatal cells.

Page generated in 0.0273 seconds