• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integração de TLD e algoritmo de Haar para rastreamento de faces

TAVEIROS, Silvia Fabiane Alves 31 January 2011 (has links)
Made available in DSpace on 2014-06-12T15:54:48Z (GMT). No. of bitstreams: 2 arquivo7603_1.pdf: 2766072 bytes, checksum: 45006307abb4b9f20d8348671c07565d (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2011 / A interação natural diz respeito à forma natural como as pessoas se comunicam, seja através de gestos, expressões e movimentos. Pesquisas nessa área tentam construir sistemas que possam compreender essas ações. Sistemas baseados em interação natural são uma tecnologia não intrusiva, a qual não é notada pelo usuário no cotidiano e tem um bom tempo de resposta de processamento. As interfaces atuais tentam se aproximar cada vez mais das perspectivas humanas, sendo ainda limitadas por tecnologias de entrada de dados não adequadas. Dentro deste contexto se encontram as técnicas de realidade aumentada sem marcadores (MAR), que realizam o rastreamento e o registro de objetos virtuais em cenas reais sem a utilização de elementos intrusivos às cenas, fator que possibilita sua utilização em ambientes pouco controlados e tornam sua definição mais complexa. Um ramo de aplicação em destaque nos meios acadêmico e industrial é o rastreamento de faces tanto do ponto de vista de aplicações de MAR quanto de sistemas de segurança, devido à possibilidade de facilitar o reconhecimento automático de faces em cenários de tempo real. A capacidade de estimar a pose da cabeça de outra pessoa é uma habilidade humana comum, mas que representa um desafio para os sistemas de visão computacional. Um rastreador de posição de face ideal deve ser invariante a rotação e escala, ser robusto, inicializar automaticamente, suportar oclusão parcial e total, além de mudança de iluminação e movimentos de cabeça rápidos. Neste trabalho desenvolvemos um sistema de rastreamento de face interativo que utiliza técnicas 2D, uma câmera e características naturais da cena para se obter um rastreamento que contenha as requisições necessárias por um estimador de face ideal. O algoritmo utilizado para o rastreamento de face de longo prazo integrou duas técnicas para obtenção de uma aplicação robusta e em tempo real: algoritmo de Haar e TLD (tracking learnig detect), sendo que o primeiro é responsável pela inicialização automática da face no ambiente, enquanto o segundo utiliza técnicas de aprendizado supervisionado, usando os próprios erros para aprimorar o rastreamento
2

[en] COLLABORATIVE FACE TRACKING: A FRAMEWORK FOR THE LONG-TERM FACE TRACKING / [pt] RASTREAMENTO DE FACES COLABORATIVO: UMA METODOLOGIA PARA O RASTREAMENTO DE FACES AO LONGO PRAZO

VICTOR HUGO AYMA QUIRITA 22 March 2021 (has links)
[pt] O rastreamento visual é uma etapa essencial em diversas aplicações de visão computacional. Em particular, o rastreamento facial é considerado uma tarefa desafiadora devido às variações na aparência da face, devidas à etnia, gênero, presença de bigode ou barba e cosméticos, além de variações na aparência ao longo da sequência de vídeo, como deformações, variações em iluminação, movimentos abruptos e oclusões. Geralmente, os rastreadores são robustos a alguns destes fatores, porém não alcançam resultados satisfatórios ao lidar com múltiplos fatores ao mesmo tempo. Uma alternativa é combinar as respostas de diferentes rastreadores para alcançar resultados mais robustos. Este trabalho se insere neste contexto e propõe um novo método para a fusão de rastreadores escalável, robusto, preciso e capaz de manipular rastreadores independentemente de seus modelos. O método prevê ainda a integração de detectores de faces ao modelo de fusão de forma a aumentar a acurácia do rastreamento. O método proposto foi implementado para fins de validação, tendo sido testado em diversas configurações que combinaram até cinco rastreadores distintos e um detector de faces. Em testes realizados a partir de quatro sequências de vídeo que apresentam condições diversas de imageamento o método superou em acurácia os rastreadores utilizados individualmente. / [en] Visual tracking is fundamental in several computer vision applications. In particular, face tracking is challenging because of the variations in facial appearance, due to age, ethnicity, gender, facial hair, and cosmetics, as well as appearance variations in long video sequences caused by facial deformations, lighting conditions, abrupt movements, and occlusions. Generally, trackers are robust to some of these factors but do not achieve satisfactory results when dealing with combined occurrences. An alternative is to combine the results of different trackers to achieve more robust outcomes. This work fits into this context and proposes a new method for scalable, robust and accurate tracker fusion able to combine trackers regardless of their models. The method further provides the integration of face detectors into the fusion model to increase the tracking accuracy. The proposed method was implemented for validation purposes and was tested in different configurations that combined up to five different trackers and one face detector. In tests on four video sequences that present different imaging conditions the method outperformed the trackers used individually.

Page generated in 0.0955 seconds