Spelling suggestions: "subject:"tat betina"" "subject:"tat cetina""
1 |
Ultrahigh Resolution Optical Coherence Tomography for Non-invasive Imaging of Outer Retina Degeneration in Rat RetinaHariri, Sepideh January 2013 (has links)
This project initiated with the aim for improving the ultrahigh resolution optical coherence tomography (UHR-OCT) system performance by considering the limitations to the axial OCT resolution for in vivo imaging of human and animal retina. To this end, a computational model was developed to simulate the effect of wavelength-dependant water absorption on the detected spectral shape of the broad-bandwidth light source used in UHR-OCT at 1060nm wavelength region, which effectively determines the axial OCT resolution in the retina. For experimental verification of the computational model, a custom built light source with a re-shaped spectrum (Superlum Inc.) was interfaced to the state-of-the-art UHR-OCT system. About 30% improvement of the axial OCT resolution in the rat retina and ~12% improvement of the axial OCT resolution in the human retina was achieved compared to the case of the almost Gaussian shaped spectrum of the standard, commercially available SLD. Although water absorption in the 1060nm spectral region strongly affects the sample beam, selecting a suitable light source with specific spectral shape can compensate for the undesired water absorption effect and thus result in significantly improved axial resolution in in vivo OCT retinal images.
To demonstrate the advantages of the state-of-the-art OCT technology for non invasive retinal imaging, an established animal model of outer retina degeneration (sodium iodate (NaIO3)-induced retina degeneration) was employed for longitudinal monitoring of the degeneration and investigation of possible early and dynamic signs of damage undetected by other imaging modalities.
The long-term (up to 3 months) and short-term (up to 12 hours) effect of sodium iodate toxicity on the layered structure of retina was monitored longitudinally and in vivo for the first time using OCT. An initial acute swelling of the retina, followed by progressive disruption and degeneration of outer retina was observed as a result of sodium iodate-induced damage. Changes in the thickness and optical reflectivity of individual retinal layers were extracted from the OCT images to quantify the changes occurring at different stages of the disease model.
Results from this project present the theoretical and practical limits to the highest axial OCT resolution achievable for retina imaging in the 1060nm spectral range both in small animals and humans, and provided a framework for future development of novel light sources. Furthermore, UHR-OCT imaging was shown to be an effective and valuable modality for in vivo, non invasive investigation of retina degenerative disease.
|
2 |
Ultrahigh Resolution Optical Coherence Tomography for Non-invasive Imaging of Outer Retina Degeneration in Rat RetinaHariri, Sepideh January 2013 (has links)
This project initiated with the aim for improving the ultrahigh resolution optical coherence tomography (UHR-OCT) system performance by considering the limitations to the axial OCT resolution for in vivo imaging of human and animal retina. To this end, a computational model was developed to simulate the effect of wavelength-dependant water absorption on the detected spectral shape of the broad-bandwidth light source used in UHR-OCT at 1060nm wavelength region, which effectively determines the axial OCT resolution in the retina. For experimental verification of the computational model, a custom built light source with a re-shaped spectrum (Superlum Inc.) was interfaced to the state-of-the-art UHR-OCT system. About 30% improvement of the axial OCT resolution in the rat retina and ~12% improvement of the axial OCT resolution in the human retina was achieved compared to the case of the almost Gaussian shaped spectrum of the standard, commercially available SLD. Although water absorption in the 1060nm spectral region strongly affects the sample beam, selecting a suitable light source with specific spectral shape can compensate for the undesired water absorption effect and thus result in significantly improved axial resolution in in vivo OCT retinal images.
To demonstrate the advantages of the state-of-the-art OCT technology for non invasive retinal imaging, an established animal model of outer retina degeneration (sodium iodate (NaIO3)-induced retina degeneration) was employed for longitudinal monitoring of the degeneration and investigation of possible early and dynamic signs of damage undetected by other imaging modalities.
The long-term (up to 3 months) and short-term (up to 12 hours) effect of sodium iodate toxicity on the layered structure of retina was monitored longitudinally and in vivo for the first time using OCT. An initial acute swelling of the retina, followed by progressive disruption and degeneration of outer retina was observed as a result of sodium iodate-induced damage. Changes in the thickness and optical reflectivity of individual retinal layers were extracted from the OCT images to quantify the changes occurring at different stages of the disease model.
Results from this project present the theoretical and practical limits to the highest axial OCT resolution achievable for retina imaging in the 1060nm spectral range both in small animals and humans, and provided a framework for future development of novel light sources. Furthermore, UHR-OCT imaging was shown to be an effective and valuable modality for in vivo, non invasive investigation of retina degenerative disease.
|
3 |
Magnetic Resonance Imaging of the Rat RetinaBhagavatheeshwaran, Govind 16 April 2008 (has links)
The retina is a thin layer of tissue lining the back of the eye and is primarily responsible for sight in vertebrates. The neural retina has a distinct layered structure with three dense nuclear layers, separated by plexiform layers comprising of axons and dendrites, and a layer of photoreceptor segments. The retinal and choroidal vasculatures nourish the retina from either side, with an avascular layer comprised largely of photoreceptor cells. Diseases that directly affect the neural retina like retinal degeneration as well as those of vascular origin like diabetic retinopathy can lead to partial or total blindness. Early detection of these diseases can potentially pave the way for a timely intervention and improve patient prognosis. Current techniques of retinal imaging rely mainly on optical techniques, which have limited depth resolution and depend mainly on the clarity of visual pathway. Magnetic resonance imaging is a versatile tool that has long been used for anatomical and functional imaging in humans and animals, and can potentially be used for retinal imaging without the limitations of optical methods. The work reported in this thesis involves the development of high resolution magnetic resonance imaging techniques for anatomical and functional imaging of the retina in rats. The rats were anesthetized using isoflurane, mechanically ventilated and paralyzed using pancuronium bromide to reduce eye motion during retinal MRI. The retina was imaged using a small, single-turn surface coil placed directly over the eye. The several physiological parameters, like rectal temperature, fraction of inspired oxygen, end-tidal CO2, were continuously monitored in all rats. MRI parameters like T1, T2, and the apparent diffusion coefficient of water molecules were determined from the rat retina at high spatial resolution and found to be similar to those obtained from the brain at the same field strength. High-resolution MRI of the retina detected the three layers in wild-type rats, which were identified as the retinal vasculature, the avascular layer and the choroidal vasculature. Anatomical MRI performed 24 hours post intravitreal injection of MnCl2, an MRI contrast agent, revealed seven distinct layers within the retina. These layers were identified as the various nuclear and plexiform layers, the photoreceptor segment layer and the choroidal vasculature using Mn54Cl2 emulsion autoradiography. Blood-oxygenlevel dependent (BOLD) functional MRI (fMRI) revealed layer-specific vascular responses to hyperoxic and hypercapnic challenges. Relative blood volume of the retina calculated by using microcrystalline iron oxide nano-colloid, an intravascular contrast agent, revealed high blood-volume in the choroidal vasculature. Fractional changes to blood volume during systemic challenges revealed a higher degree of autoregulation in the retinal vasculature compared to the choroidal vasculature, corroborating the BOLD fMRI data. Finally, the retinal MRI techniques developed were applied to detect structural and vascular changes in a rat model of retinal dystrophy. We conclude that retinal MRI is a powerful investigative tool to resolve layer-specific structure and function in the retina and to probe for changes in retinal diseases. We expect the anatomical and functional retinal MRI techniques developed herein to contribute towards the early detection of diseases and longitudinal evaluation of treatment options without interference from overlying tissue or opacity of the visual pathway.
|
Page generated in 0.0554 seconds