• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental characterization of stress corrosion cracking sensitization in austenitic stainless steel using nonlinear ultrasonic Rayleigh waves

Lakocy, Alexander J. 07 January 2016 (has links)
This thesis examines the use of nonlinear ultrasound to evaluate sensitization, a precursor to stress corrosion cracking in austenitic stainless steel. Ultrasonic Rayleigh surface waves are generated on a specimen; as these waves pass through sensitized material, second harmonic generation (SHG) increases. In austenitic stainless steel with oven-induced sensitization, this increase is due only to the formation of chromium carbide precipitates, key products of the sensitization process. Weld-induced sensitization specimens demonstrate additional increases in SHG, likely caused by increased residual stress and dislocation density as a result of uneven heating. Experimental data are used to calculate the acoustic nonlinearity parameter, which provides a single value directly related to the quantity of micro- and nano-scale damage present within any given sample. Using this procedure, the effects of weld- and oven-induced sensitization are compared. Results demonstrate the feasibility of using nonlinear Rayleigh waves to detect and monitor stress corrosion susceptibility of welded material.
2

Evaluation of near surface material degradation in concrete using nonlinear Rayleigh surface waves

Gross, Johann 27 August 2012 (has links)
Comparative studies of nondestructive evaluation methods have shown that nonlinear ultrasonic techniques are more sensitive than conventional linear methods to changes in material microstructure and the associated small-scale damage. Many of the material degradation processes such as carbonation in concrete, corrosion in metals, etc., begin at the surface. In such cases, ultrasonic Rayleigh surface waves are especially appropriate for detection and characterization of damage since their energy is concentrated in the top layer of the test object. For the civil engineering infrastructure, only a limited number of field applicable nonlinear ultrasonic techniques have been introduced. In this paper a nonlinear ultrasonic measurement technique based on the use of Rayleigh waves is developed and used to characterize carbonation in concrete samples. Wedge transducer is used for the generation and an accelerometer for detection of the fundamental and modulated ultrasonic signal components. The measurements are made by varying the input voltage and along the propagation distance. The slope of the normalized modulated amplitudes is taken as the respective nonlinearity parameter. Concrete samples with two different levels of damage are examined, and the difference of the two fundamental frequencies is used to quantify damage state.

Page generated in 0.1594 seconds