Spelling suggestions: "subject:"rayonnement betatron"" "subject:"rayonnement bétatron""
1 |
Injection induite par ionisation pour l’accélération laser-plasma dans des tubes capillaires diélectriques / Laser wakefield acceleration with ionization-induced injection in dielectric capillary tubesDesforges, Frédéric 10 July 2015 (has links)
L’interaction d’une impulsion laser, courte (~ 10 - 100 fs) et ultra-intense (> 10^18 W/cm²), avec un plasma sous-dense (< 10^19 cm^-3) peut accélérer, de manière compacte, une fraction des électrons du plasma jusqu’à des énergies relativistes (~ 100 - 300MeV). Ce phénomène, nommé accélération plasma par sillage laser (APSL), pourrait avoir de nombreuses applications telles que le futur collisionneur d’électrons a ultra-hautes énergies. Cependant, cela requiert au préalable des développements supplémentaires afin que l’APSL produise des paquets d’électrons stables et reproductibles avec une excellente qualité, c’est-à-dire de faibles émittances longitudinale et transverses.Au cours de cette thèse, une étude expérimentale de la stabilité et de la reproductibilité des paquets d’électrons auto-injectes a été réalisée dans des tubes capillaires diélectriques, de longueur 8-20mm et de rayon interne 76-89 µm, contenant du H2 pur a une densité électronique de (10 +/- 1, 5)x10^18 cm^-3. Des paquets d’électrons auto-injectes ont été produits, a une cadence de deux tirs par minute, avec une charge accélérée au-delà de 40 MeV de (66+/-7) pC, une énergie moyenne de (65+/-6) MeV, une divergence de (9+/-1) mrad et une fluctuation de pointe de 2,3 mrad. Trois sources de fluctuations et de dérives des propriétés des paquets d’électrons ont été discutées : dérive d’énergie laser, modification du gradient montant de densité électronique et fluctuations du pointé laser. Des contraintes sur le régime de fonctionnement ont été proposées afin d’améliorer la stabilité et la reproductibilité de la source laser-plasma d’électrons.Un mécanisme alternatif d’injection d’électrons dans l’onde de plasma a également été examiné : l’injection induite par ionisation. Une étude expérimentale a montré que les paquets d’électrons accélérés dans un mélange de 99%H2 + 1%N2 ont une charge deux fois plus importante qu’en présence de H2 pur. De plus, une injection plus précoce a été observée pour le mélange de 99%H2 + 1%N2, indiquant que les premiers électrons sont captures selon le mécanisme d’injection induite par ionisation. Une étude complémentaire, utilisant des simulations Particle-In-Cell avec le code WARP, confirment les résultats expérimentaux et suggèrent que l’auto-injection est supprimée par l’injection induite par ionisation. / The interaction of a short (~ 10 - 100 fs) and ultra-intense (> 10^18 W/cm²) laser pulse with an underdense (< 10^19 cm^-3) plasma can accelerate, in a compact way, a fraction of the electrons of the plasma toward relativistic energies (~ 100 - 300MeV). This mechanism, called laser wakefield acceleration (LWFA), might have various applications such as the future ultra-high energy electron collider. Prior to this, additional investigations are needed to ensure, through LWFA, a stable and reproducible generation of electron bunches of high quality, i.e. low transverse and longitudinal emittances.In this thesis, the stability and the reproducibility of the electron self-injection were experimentally investigated in 8-20mm long, dielectric capillary tubes, with an internal radius of 76-89 µm, and filled with pure H2 at an electronic density of de (10 +/- 1.5)x10^18 cm^-3. Electron bunches were produced, at a rate of two shots per minute, with an accelerated charge above 40 MeV of (66+/-7) pC, a mean energy of (65+/-6) MeV, a divergence of (9+/-1) mrad, and a pointing fluctuation of 2.3 mrad. Three sources were identified for the fluctuations and drifts of the electron bunch properties: laser energy drift, change of the electron number density upramp, and laser pointing fluctuations. Restrictions on the operating regime were proposed in order to improve the stability and the reproducibility of the laser-plasma electron source.An alternative mechanism of electron injection into the plasma wave was also investigated: the ionization-induced injection. An experimental study demonstrated that electron bunches generated in a mixture of 99%H2 + 1%N2 have twice more accelerated charge than in the case of pure H2. Moreover, the earlier onset of electron injection was observed for the mixture 99%H2 + 1%N2, indicating that the first electrons were trapped under the mechanism of ionization-induced injection. Particle-In-Cell simulations performed with the code WARP confirm the experimental results and suggest that the self-injection was inhibited by the ionization-induced injection.
|
2 |
Laser à rayons X ultra-compact Raman XFEL / Ultra-compact X-ray free electron laser Raman XFELHadj-Bachir, Mokrane 15 December 2016 (has links)
L’obtention d’un Laser à Électrons Libres X (LEL-X) compact est un objectif majeur pour le développement des lasers. Plusieurs schémas prometteurs de LEL-X ont été proposés en utilisant à la fois l’accélération d’électrons dans les plasmas et des onduleurs optiques en régime Compton ou Compton inverse. Nous avons proposé un nouveau concept de LEL-X compact baptisé Raman XFEL, en combinant la physique des LEL en régime Compton, des lasers XUV conventionnels basés sur l’interaction laser plasma, et de l’optique non-linéaire. Nous étudions dans cette thèse les étapes préalables pour déclencher un effet laser à rayons X lors de l’interaction entre un paquet d’électrons libres relativistes et un réseau optique créé par l’interférence transverse de deux impulsions laser intenses. Dans cet objectif j’ai développé un code particulaire baptisé RELIC. Les études menées avec le code RELIC nous ont permis d’étudier la dynamique d’électrons relativistes et les processus d’injection du paquet d’électrons dans le réseau optique. Grâce à RELIC, nous avons distingué de nouveaux régimes d’interaction en fonction des paramètres du paquet d’électrons, ainsi que de la géométrie du réseau optique. Ces études ont été appliquées à l’amplification du rayonnement X et appuyées par des simulations PIC. RELIC a également permis de modéliser et d’analyser la première expérience réalisée en octobre 2015 sur l’installation laser ’Salle Jaune’ au Laboratoire d’Optique Appliquée (LOA). Cette première expérience a été une étape très importante pour la validation des modèles théoriques, et pour la réalisation future d’un laser à électrons libre X Raman. / The quest for a compact X-ray laser has long been a major objective of laser science. Several schemes using optical undulators are currently considered, in order to trigger the amplification of back scattered radiation, in Compton or inverse Compton regime. We have proposed a new concept of compact XFEL based on a combination between the physics of free electron lasers, of laser-plasma interactions, and of nonlinear optics. In this thesis, we study the necessary steps to trigger a X-ray laser during the interaction between a free relativistic electron bunch and an optical lattice created by the interference of two intense transverse laser pulses. For this purpose I developed a particular tracking code dubbed RELIC. RELIC allowed us to study the dynamics and injection process of a bunch of relativistic electrons into the optical lattice. Thanks to RELIC, we distinguished several interaction regimes depending on the relativistic electron bunch parameters, and on those of the optical lattice and its geometry. These studies are applied to the X ray amplification and supported by PIC simulations. RELIC also allowed us to model and analyze the first experiment conducted in october 2015 on the ”Salle Jaune” laser facility at LOA. This first experiment was very important to validate our theoretical models, and should prove to be an essential milestone for the development of a Raman X-ray free electron laser.
|
Page generated in 0.0686 seconds