• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of the Reactant Temperature on Particle Entrained Laminar Methane-Air Premixed Flames

Lee, Minkyu 01 May 2014 (has links)
This study investigates the laminar burning velocity of premixed methane-air mixtures, having controlled supply of micron-sized (75-90 ¥ìm) coal dust and sand particles over a range of gas phase equivalence ratios (0.9-1.2), dust concentrations (0-250 g/m3) and reactant temperatures (297, 350, 400 K) using a novel Bunsen-burner type experimental design. The experimental results show that, the laminar burning velocity is enhanced by the increase in the reactant temperature, irrespective of the equivalence ratio of the mixture due to enhanced reaction rates. Addition of coal particles in fuel lean (ϕ < 1) mixtures increases the laminar burning velocity initially up to a certain coal dust concentration, but after that, the trend is altered; either it remains constant or shows a decreasing trend. The dust concentration value, which produces the initial or local maximum, increases with increase in reactant temperature. In other words, the reactant temperature plays a significant role in the trend of increase in laminar burning velocity with dust addition. For ϕ > 1, at a given reactant temperature, a linear decay of burning velocity with dust addition is observed. When a combustible dust particle interacts with the flame zone, it extracts energy from the flame (heat sink effect) and releases volatiles, thereby changing the local equivalence ratio around the flame zone. Both, increase in the equivalence ratio and the heat sink effect, are influenced by the reactant temperature. A mathematical model including these effects is developed and the model predictions are compared with the experimental results. The results are in a good agreement for fuel lean and stoichiometric mixtures; whereas the model is found to under predict results for fuel rich cases, and needs further improvements.
2

RADIOLYTICALLY POWERED MICRO FUEL CELL

Liedhegner, Joseph Edward 14 January 2008 (has links)
No description available.
3

Quantitative Model for the Prediction of Hydrodynamic Size of Nonionic Reverse Micelles

Michaels, Melissa A. 01 January 2006 (has links)
The sizes of nonionic reverse micelles were investigated as a function of the molecular structure of the surfactant, the type of oil, the total concentration of surfactant [NP], the ratio of NP4 to total surfactant (r), the water to surfactant molar ratio (ω), temperature, salt concentration, and polar phase. The basis of our investigation was nonylphenol polyethoxylates - NP4 and NP7. Micelle sizes were determined using dynamic light scattering (DLS). A central composite experimental design was used to quantitatively model reverse micelle size as a function of ω, [NP], and r. The model has demonstrated the capability of predicting the mean diameter of micelles from 4 to 13 nm with a precision of ± 2 nm as measured by DLS. This quantitative correlation between the size of reverse micelles and the synthetic variables provides the foundation for choosing experimental conditions to control reverse micelle size.
4

Molecular-Size Selective Zeolite Membrane Encapsulated Novel Catalysts for Enhanced Biomass to Liquid (BTL) Processes

Cimenler, Ummuhan 03 April 2017 (has links)
80% of energy usage in the word comes from fossil fuels (coal, oil, natural gas) and among the fossil fuels, oil is the most consumed energy source especially in transportation. However, due to concerns about energy demand and energy sustainability, global warming and dependency on foreign oil, generation of renewable fuels is crucial for transportation. Biomass to Liquid (BTL) is a promising process available to produce renewable liquid fuels. BTL fuels have great potential to meet the growing demand for liquid fuels, mitigating climate change, and providing value to rural areas. However, there are two major challenges with biofuels produced from BTL. One of the major challenge is the H2:CO ratio of biomass gasification product is insufficient for production of hydrocarbon fuels due to formation of methane and tars. The steam reforming of hydrocarbons, to improve the H2:CO ratio, is generally conducted as part of the gas conditioning. However, tars cause the catalysts to deactivate rapidly. Secondly, for fuels produced from the gasification route regardless of feedstock source, there is an economy-of-scale issue. Therefore, it is desirable to seek ways of process intensification to allow small scale plants to be more economical. Zeolites can be used to solve these challenges since they have reactant selectivity property. To achieve a catalyst capable of reforming methane without potential for deactivation by tars, the encapsulation of a core reforming catalyst with porous zeolite shell is examined in this dissertation. After detailed introduction in the first chapter, a composite H-β zeolite membrane encapsulated 1.6wt%Ni/1.2wt%Mg/Ce0.6Zr0.4O2 steam reforming catalyst was prepared by a physical coating method in the second chapter of the study. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analyses indicated that H-β zeolite was coated successfully on the core reforming catalyst. The pore size of H-β zeolite shell was between 0.43 and 0.57 nm, as measured by the HK method. Steam reforming of CH4 and C7H8 (as a tar model) were conducted with the composite H-β zeolite coated reforming catalyst, the two components individually, and physical mixtures of the two components as a function of temperature (780–840°C). CH4 conversion was enhanced by a factor of 2–3 (depending on temperature) for the composite catalyst as compared to the core reforming catalyst individually even though the zeolite did not have any activity alone. Possible reasons for the enhanced CH4 conversion include confined reaction effects (increase residence time within pores) of the catalyst containing the zeolite coating and/or Al3+ promotion of the active sites. Alternatively, due to molecular-size selectivity, the composite H-β zeolite coated reforming catalyst demonstrated a decrease in C7H8 conversion when compared to the uncoated reforming catalyst. The results validate the use of size selective catalysts to control molecular traffic and enhance the reforming reactant selectivity. A composite catalyst consisting of an outer layer of zeolite membrane encapsulating an inner reforming catalyst core was synthesized by a double physical coating method to investigate reactant selectivity (ratio of methane/toluene conversion rate) in steam reforming of methane (CH4) and toluene (C7H8). A double encapsulation (51 wt % H-β zeolite) of a 1.6 wt % Ni−1.2 wt % Mg/Ce0.6Zr0.4O2 steam reforming catalyst was compared to a singly coated composite catalyst (34.3 wt % H-β zeolite) to investigate zeolite thickness effects on the conversion of different sized hydrocarbons. The increase in the zeolite content from 34.3 to 51 wt % decreased both CH4 and C7H8 conversions (by up to 14% depending upon the temperature) as a result of the increase in diffusional limitations. Weisz−Prater criteria and Thiele moduli calculations confirmed that the reactions were performed under internal diffusion limitations. The C7H8 conversion of the 51 wt % composite (SR@β51%) catalyst was similar to the zeolite alone, indicating negligible contribution from the protected catalyst core. The reactant selectivity increased by up to 1.5 times on SR@β51% in comparison to the SR@β34.3% composite. Combined reforming at 800 °C on the SR@β51% catalyst indicated that the catalyst was stable during the 10 h time on stream. Continuing this work, a non-acidic Silicalite-1 zeolite membrane encapsulated 1.6wt%Ni-1.2wt%Mg/Ce0.6Zr0.4O2 steam reforming composite catalyst, synthesized by a physical coating method, was used to investigate effect of encapsulation on size selective steam reforming, using methane (CH4) and toluene (C7H8) as representative species. Weisz-Prater Criteria and Thiele moduli calculations indicated internal diffusion limitations. Combined reforming of CH4 and C7H8 at 800°C on the composite catalyst demonstrated stability during the 10 h time on stream while uncoated SR catalyst deactivated. The non-acidic Silicalite-1 encapsulated catalyst showed decreases (~2-7%) in both CH4 and C7H8 conversions compared to acidic H-β zeolite confirming that shell acidity did contribute to conversion and suggesting that shell defects/grain boundaries were responsible for the C7H8 conversion. Finally, low temperature 0.16wt%Pt–1.34wt%Ni–1.00wt%Mg/(Ce0.6Zr0.4)O2 reforming catalyst was triple coated with H-β zeolite (60 wt% of zeolite) to be utilized synthesis of combination steam reforming catalyst (SR) and Fischer-Tropsch Synthesis (FTS) catalyst (CRAFT) for a single-step conversion of methane to liquid fuels. Scanning electron microscopy (SEM) image and energy-dispersive spectroscopy (EDS) analysis result demonstrated that H-β zeolite was successfully encapsulated onto the low temperature reforming catalyst. The catalyst was tested in steam reforming of methane (CH4) and toluene (C7H8) and the results was compared with 51 wt%. While CH4 conversions are very similar on the 60wt% composite catalyst with 51wt% composite catalyst, no C7H8 conversion was seen on the 60 wt% composite catalyst. Thus, it is concluded that the 60 wt% composite catalyst can be utilized to synthesis CRAFT catalyst.
5

Current and Temperature Distributions in Proton Exchange Membrane Fuel Cell

Alaefour, Ibrahim January 2012 (has links)
Proton exchange membrane fuel cell (PEMFC) is a potential alternative energy conversion device for stationary and automotive applications. Wide commercialization of PEMFC depends on progress that can be achieved to enhance its reliability and durability along with cost reduction. It is desirable to operate the PEMFC at uniform local current density and temperature distributions over the surface of the membrane electrode assembly (MEA). Non-uniform distributions of both current and temperature over the MEA could result in poor reactant and catalyst utilization as well as overall cell performance degradation. Local current distribution in the PEMFC electrodes are closely related to operating conditions, but it is also affected by the organization of the reactant flow arrangements in PEMFCs. Reactant depletion and water formation along the flow channel leads to current variation from the channel inlet to the exit, which leads to non-uniformity of local electrochemical reaction activity, and degradation of the cell performance. Flow arrangements between the anode and cathode streams, such as co-, counter- and cross- flow can exacerbate the effect of the non-uniformity considerably, producing complex current distribution patterns over the electrode surfaces. Thus, understanding of the local current density and its spatial characteristics, as well as the temperature distributions under different physical and operating conditions, is crucially important in order to develop optimum design and operational strategies. Despite the importance of the influence of the flow arrangement on the local current and temperature distributions under various operating conditions, few systematic studies have been conducted experimentally to investigate this effect. In this research, an experimental setup with special PEMFC test cells are designed and fabricated in-house, in order to conduct in-situ mapping of the local current and temperature distributions over the electrode surfaces. A segmented flow field plate and the printed circuit board (PCB) technique is used to measure the current distribution in a single PEMFC. In situ, nondestructive temperature measurements are conducted using thermocouples to determine the actual temperature distribution. Experimental studies have been conducted to investigate the effect of different flow arrangements between the anode and cathode (co-, counter-, and cross- flow) on the local current density distribution over the MEA surface. Furthermore, local current distribution has been characterized for PEMFCs under various operating conditions such as reactant stoichiometry ratios, reactant backpressure, cell temperature, cell potentials, and relative humidity for each one of the reactant flow arrangements. The dynamic characteristics of the local current in PEMFC under different operating conditions also have been studied. Temperature distributions along the parallel and serpentine flow channels in PEMFs under various operating conditions are also investigated. All independent tests are conducted to identify and optimize the key design and operational parameters for both local current and temperature distributions. It has been found that the local current density distribution is strongly affected by the flow arrangement between the anode and cathode streams and the key operating conditions. It has also been observed that the counter-flow arrangement generates the most uniform distribution for the current density, whereas the co-flow arrangement results in a considerable variation in the current density from the reactant gas stream inlet to the exit. Low stoichiometry ratio of hydrogen at the anode side has a predominant effect on the current distribution and cell performance. Further, it has been found that the dynamic characteristics and the degree of fluctuation of local current density inside PEMFC are strongly influenced by the crucial operating conditions. In-situ, nondestructive temperature measurements indicate that the temperature distribution inside the PEMFC is strongly sensitive to the cell’s current density. The temperature distribution inside the PEMFC seems to be virtually uniform at low current density, while the temperature variation increases up to 2 oC at the high current density. Finally, the present work contribution related to the local current and temperature distributions is required to understand the effect of each individual or even several operating parameters combined together on the local current and temperature distributions. This will help to develop an optimum design, which leads to enhancing the reliability and durability in operational PEMFCs.
6

Current and Temperature Distributions in Proton Exchange Membrane Fuel Cell

Alaefour, Ibrahim January 2012 (has links)
Proton exchange membrane fuel cell (PEMFC) is a potential alternative energy conversion device for stationary and automotive applications. Wide commercialization of PEMFC depends on progress that can be achieved to enhance its reliability and durability along with cost reduction. It is desirable to operate the PEMFC at uniform local current density and temperature distributions over the surface of the membrane electrode assembly (MEA). Non-uniform distributions of both current and temperature over the MEA could result in poor reactant and catalyst utilization as well as overall cell performance degradation. Local current distribution in the PEMFC electrodes are closely related to operating conditions, but it is also affected by the organization of the reactant flow arrangements in PEMFCs. Reactant depletion and water formation along the flow channel leads to current variation from the channel inlet to the exit, which leads to non-uniformity of local electrochemical reaction activity, and degradation of the cell performance. Flow arrangements between the anode and cathode streams, such as co-, counter- and cross- flow can exacerbate the effect of the non-uniformity considerably, producing complex current distribution patterns over the electrode surfaces. Thus, understanding of the local current density and its spatial characteristics, as well as the temperature distributions under different physical and operating conditions, is crucially important in order to develop optimum design and operational strategies. Despite the importance of the influence of the flow arrangement on the local current and temperature distributions under various operating conditions, few systematic studies have been conducted experimentally to investigate this effect. In this research, an experimental setup with special PEMFC test cells are designed and fabricated in-house, in order to conduct in-situ mapping of the local current and temperature distributions over the electrode surfaces. A segmented flow field plate and the printed circuit board (PCB) technique is used to measure the current distribution in a single PEMFC. In situ, nondestructive temperature measurements are conducted using thermocouples to determine the actual temperature distribution. Experimental studies have been conducted to investigate the effect of different flow arrangements between the anode and cathode (co-, counter-, and cross- flow) on the local current density distribution over the MEA surface. Furthermore, local current distribution has been characterized for PEMFCs under various operating conditions such as reactant stoichiometry ratios, reactant backpressure, cell temperature, cell potentials, and relative humidity for each one of the reactant flow arrangements. The dynamic characteristics of the local current in PEMFC under different operating conditions also have been studied. Temperature distributions along the parallel and serpentine flow channels in PEMFs under various operating conditions are also investigated. All independent tests are conducted to identify and optimize the key design and operational parameters for both local current and temperature distributions. It has been found that the local current density distribution is strongly affected by the flow arrangement between the anode and cathode streams and the key operating conditions. It has also been observed that the counter-flow arrangement generates the most uniform distribution for the current density, whereas the co-flow arrangement results in a considerable variation in the current density from the reactant gas stream inlet to the exit. Low stoichiometry ratio of hydrogen at the anode side has a predominant effect on the current distribution and cell performance. Further, it has been found that the dynamic characteristics and the degree of fluctuation of local current density inside PEMFC are strongly influenced by the crucial operating conditions. In-situ, nondestructive temperature measurements indicate that the temperature distribution inside the PEMFC is strongly sensitive to the cell’s current density. The temperature distribution inside the PEMFC seems to be virtually uniform at low current density, while the temperature variation increases up to 2 oC at the high current density. Finally, the present work contribution related to the local current and temperature distributions is required to understand the effect of each individual or even several operating parameters combined together on the local current and temperature distributions. This will help to develop an optimum design, which leads to enhancing the reliability and durability in operational PEMFCs.
7

The importance of elemental stacking order and layer thickness in controlling the formation kinetics of copper indium diselenide

Thompson, John O., 1962- 12 1900 (has links)
xiii, 84 p. ; ill. / This dissertation describes the deposition and characterization of an amorphous thin film with a composition near that of CuInSe 2 (CIS). The creation of an amorphous intermediate leads to a crystalline film at low annealing temperatures. Thin films were deposited from elemental sources in a custom built high vacuum chamber. Copper-selenium and indium-selenium binary layered samples were investigated to identify interfacial reactions that would form undesired binary intermediate compounds resulting in the need for high temperature annealing. Although the indium-selenium system did not form interfacial compounds on deposit, indium crystallized when the indium layer thickness exceeded 15 angstroms, disrupting the continuity of the elemental layers. Copper-selenium elemental layers with a repeat thickness of over 30 angstroms or compositions with less than 63% selenium formed CuSe on deposit. Several deposition schemes were investigated to identify the proper deposition pattern and thicknesses to form the CIS amorphous film. Simple co-deposition resulted in the nucleation of CIS. A simple stacking of the three elements in the older Se-In-Cu at a repeat thickness of 60 angstroms resulted in the nucleation of CuSe and sometimes CIS. The CIS most likely formed due to the disruption of the elemental layers by the growth of the CuSe. Reduction of the repeat thickness to 20 angstroms eliminated the nucleation of CuSe, as predicted by the study of the binary Cu-Se layered samples, but resulted in the nucleation of CIS, similar to the co-deposited samples. To eliminate both the thick Cu-Se region, and prevent the intermixing of all three elements, a more complex deposition pattern was initiated. The copper and selenium repeat thicknesses were reduced into a Se-Cu-Se-Cu-Se pattern followed by deposition of the indium layer at a total repeat thickness of 60 angstroms. At a Se:Cu ratio of 2:1 and the small repeat thickness, no Cu-Se phases nucleated. Additionally, the Cu-In interface was eliminated. For this deposition scheme, films with a selenium rich composition relative to CuInSez were generally amorphous. Those that were Cu-In rich always nucleated CIS on deposit. Annealing of all samples produced crystalline CIS. / Adviser: David C. Johnson
8

Acoplamento não oxidativo de metano sobre metais suportados em solidos microporosos

Paloschi, Rozileia Simoni 25 February 2002 (has links)
Orientador: Gustavo Paim Valença / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-07-31T19:58:48Z (GMT). No. of bitstreams: 1 Paloschi_RozileiaSimoni_M.pdf: 2623823 bytes, checksum: 569787d9b56d1368559be20011050e5e (MD5) Previous issue date: 2002 / Resumo: A conversão catalítica de metano para combustível liquido ou outros produtos químicos é de grande interesse e muitas tentativas de utilização têm sido feitas para ativar metano em condições não oxidativas e convertê-lo em hidrocarbonetos grandes e compostos aromáticos. Neste trabalho, duas zeólitas H-ZMS-5 com razões Si/AI diferentes e uma zeólita H-Y foram impregnadas com 3% p/p de Mo e testadas na reação de acoplamento não oxidativo de metano. Análises de DRX e FTIR demonstraram que o Mo está bem disperso na superfície nos canais das zeólitas. A área superficial BET e o volume de poros apresentaram uma pequena redução após a impregnação. As reações foram feitas a 973 K. O catalisador Mo/H-Y só apresentou CO e H2 como produtos. O catalisador MO/H-ZSM-5 com a zeólita de menor razão Si/AI apresentou a maior conversão de metano e seletividade à benzeno quando a reação foi realizada em condição de baixa velocidade espacial de metano. A adição de 40% de H2 não favorece a formação de hidrocarbonetos C2 e aromáticos, enquanto a adição de apenas 10% resultou em um aumento na estabilidade da conversão de metano, especialmente para a zeólita com menor razão Si/AI. A adição de 20% de H2 resultou em menor conversão de metano e seletividade a benzeno quando comparada às reações sem adição de co-reagente e com 10% de co-reagente. Foram feitas também reações a 923 K e 1023 K para a determinação da energia de ativação. O catalisador 3Mo/H-ZSM-5 com menor razão Si/AI desativou completamente após 13 h de reação, enquanto o catalisador 3Mo/H-ZSM-5 com maior razão Si/AI desativou completamente após 9 h de reação. Este último foi regenerado por passagem de oxigênio à temperatura entre 723 e 823 K e testado novamente na reação de acoplamento não oxidativo de metano, apresentando valores de conversão de metano e seletividade à benzeno equivalentes aos observados na reação com o catalisador não regenerado / Abstract: The catalytic conversion of methane to liquid fuels or commodity chemicals is an attactive process that has received a great dela of attention recently. The conversion of methane under nonoxidative conditions results in longer chain hydrocarbons and aromatics compounds. In this work, two H-ZSM-5 zeolites with different Si/AI ratios and one H-Y zeolite were loaded with 3wt% Mo. They were used as catalysts in the reaction of nonoxidative coupling of methane. XRD and FTIR analysis showed that the molybdenum species are uniformly distributed on the surface in the channels of the zeolites. The BET surface area and the pore volume decreased slightly after impregnation with Mo. The reactions were carried out at 973 K. The only products for the Mo/H-Y smaples were CO and H2. The methane conversion and selectivity to benzene were higher for the Mo/H-ZSM-5 catalyst with lower Si/AI ratio and for lower methane space velocity. The nonoxidative coipling of methane reaction did not occur when 40% hydrogen were added to the methane feed stream. However, the methane conversion became stable and increase as 10% hydrogen were added to methane. This was true for the zeolite with lower Si/AI ratio. When 20% hydrogen were added to the methane feed stream, the methane conversion and selectivity to benzene were lower than when 10% hydrogen or no hydrogen were added to the feedstream. Reactions were carried out at 923 and 1023 K in order to determine the activation energy. The activation energy values were similar fo the reaction on the zeolites with different Si/AI ratios. The catalyst with lower Si/AI ratio deactivated after 13 h and the catalyst with higher Si/AI ratio deactivated after 9 h on stream. The catalyst with higher So/SI ratio was regenerated by flowing oxygen at temperatures between 723 and 823 K. After regeneration the catalyst had the same catalytic performance as the ¿fresh¿ catalyst / Mestrado / Desenvolvimento de Processos Químicos / Mestre em Engenharia Química
9

Investigation of Sustained Detonation Devices: the Pulse Detonation Engine-Crossover System and the Rotating Detonation Engine System

Driscoll, Robert B. 26 May 2016 (has links)
No description available.
10

Statistical identification of metabolic reactions catalyzed by gene products of unknown function

Zheng, Lianqing January 1900 (has links)
Doctor of Philosophy / Department of Statistics / Gary L. Gadbury / High-throughput metabolite analysis is an approach used by biologists seeking to identify the functions of genes. A mutation in a gene encoding an enzyme is expected to alter the level of the metabolites which serve as the enzyme’s reactant(s) (also known as substrate) and product(s). To find the function of a mutated gene, metabolite data from a wild-type organism and a mutant are compared and candidate reactants and products are identified. The screening principle is that the concentration of reactants will be higher and the concentration of products will be lower in the mutant than in wild type. This is because the mutation reduces the reaction between the reactant and the product in the mutant organism. Based upon this principle, we suggest a method to screen the possible lipid reactant and product pairs related to a mutation affecting an unknown reaction. Some numerical facts are given for the treatment means for the lipid pairs in each treatment group, and relations between the means are found for the paired lipids. A set of statistics from the relations between the means of the lipid pairs is derived. Reactant and product lipid pairs associated with specific mutations are used to assess the results. We have explored four methods using the test statistics to obtain a list of potential reactant-product pairs affected by the mutation. The first method uses the parametric bootstrap to obtain an empirical null distribution of the test statistic and a technique to identify a family of distributions and corresponding parameter estimates for modeling the null distribution. The second method uses a mixture of normal distributions to model the empirical bootstrap null. The third method uses a normal mixture model with multiple components to model the entire distribution of test statistics from all pairs of lipids. The argument is made that, for some cases, one of the model components is that for lipid pairs affected by the mutation while the other components model the null distribution. The fourth method uses a two-way ANOVA model with an interaction term to find the relations between the mean concentrations and the role of a lipid as a reactant or product in a specific lipid pair. The goal of all methods is to identify a list of findings by false discovery techniques. Finally a simulation technique is proposed to evaluate properties of statistical methods for identifying candidate reactant-product pairs.

Page generated in 0.0514 seconds