• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Safe Storage Study for Autocatalytic Reactive Chemicals

Liu, Lijun 2009 August 1900 (has links)
In the U.S. Chemical Safety and Hazard Investigation Board (CSB) report, Improving Reactive Hazard Management, there are 37 out of 167 accidents, which occurred in a storage tank or a storage area. This fact demonstrates that thermal runaway problems in chemical storage processes have not been give enough attention. Hydroxylamine Nitrate (HAN) is an important member of the hydroxylamine compound family and its diluted aqueous solution is widely used in the nuclear industry for equipment decontamination. It is also used as a solid or aqueous propellant. Due to its instability and autocatalytic behavior, it has been involved in several incidents at the Hanford and Savannah River Sites (SRS). Much research has been conducted on HAN in different areas, such as combustion mechanism, decomposition mechanism, and runaway behavior. However, the autocatalytic behavior of HAN at runaway stage has not been fully addressed due to its highly exothermic and rapid decomposition behavior. This work focuses on extracting its autocatalytic kinetics mechanism and studying its critical behavior from adiabatic calorimetry measurements. The lumped autocatalytic kinetics model, the associated model parameters and HAN critical condition are determined for the first time. The contamination effect of iron ions and nitric acid on diluted hydroxylamine nitrate solution is also studied. This work also identified the safe storage conditions for a small quantity HAN diluted solution with thermal explosion theory. Computational Fluid Dynamics (CFD) was used to further study the influence of natural convection and system scale on the critical behavior for a large quantity of chemical and thus proposed the practical storage guidelines for industrial practice.
2

Theoretical and Experimental Evaluation of Chemical Reactivity

Wang, Qingsheng 2010 August 1900 (has links)
Reactive chemicals are presented widely in the chemical and petrochemical process industry. Their chemical reactivity hazards have posed a significant challenge to the industries of manufacturing, storage and transportation. The accidents due to reactive chemicals have caused tremendous loss of properties and lives, and damages to the environment. In this research, three classes of reactive chemicals (unsaturated hydrocarbons, self-reacting chemicals, energetic materials) were evaluated through theoretical and experimental methods. Methylcyclopentadiene (MCP) and Hydroxylamine (HA) are selected as representatives of unsaturated hydrocarbons and self-reacting chemicals, respectively. Chemical reactivity of MCP, including isomerization, dimerization, and oxidation, is investigated by computational chemistry methods and empirical thermodynamic–energy correlation. Density functional and ab initio methods are used to search the initial thermal decomposition steps of HA, including unimolecular and bimolecular pathways. In addition, solvent effects are also examined using water cluster methods and Polarizable Continuum Models (PCM) for aqueous solution of HA. The thermal stability of a basic energetic material, Nitroethane, is investigated through both theoretical and experimental methods. Density functional methods are employed to explore the initial decomposition pathways, followed by developing detailed reaction networks. Experiments with a batch reactor and in situ GC are designed to analyze the distribution of reaction products and verify reaction mechanisms. Overall kinetic model is also built from calorimetric experiments using an Automated Pressure Tracking Adiabatic Calorimeter (APTAC). Finally, a general evaluation approach is developed for a wide range of reactive chemicals. An index of thermal risk is proposed as a preliminary risk assessment to screen reactive chemicals. Correlations are also developed between reactivity parameters, such as onset temperature, activation energy, and adiabatic time to maximum rate based on a limited number, 37 sets, of Differential Scanning Calorimeter (DSC) data. The research shows broad applications in developing reaction mechanisms at the molecular level. The methodology of reaction modeling in combination with molecular modeling can also be used to study other reactive chemical systems.
3

Molecular characterization of energetic materials

Saraf, Sanjeev R. 30 September 2004 (has links)
Assessing hazards due to energetic or reactive chemicals is a challenging and complicated task and has received considerable attention from industry and regulatory bodies. Thermal analysis techniques, such as Differential Scanning Calorimeter (DSC), are commonly employed to evaluate reactivity hazards. A simple classification based on energy of reaction (-H), a thermodynamic parameter, and onset temperature (To), a kinetic parameter, is proposed with the aim of recognizing more hazardous compositions. The utility of other DSC parameters in predicting explosive properties is discussed. Calorimetric measurements to determine reactivity can be resource consuming, so computational methods to predict reactivity hazards present an attractive option. Molecular modeling techniques were employed to gain information at the molecular scale to predict calorimetric data. Molecular descriptors, calculated at density functional level of theory, were correlated with DSC data for mono nitro compounds applying Quantitative Structure Property Relationships (QSPR) and yielded reasonable predictions. Such correlations can be incorporated into a software program for apriori prediction of potential reactivity hazards. Estimations of potential hazards can greatly help to focus attention on more hazardous substances, such as hydroxylamine (HA), which was involved in two major industrial incidents in the past four years. A detailed discussion of HA investigation is presented.
4

Evaluation of Alternatives for Safer and More Efficient Reactions: A study of the N-oxidation of Alkylpyridines

Saenz Noval, Lina Rocio 2011 December 1900 (has links)
The catalytic N-oxidation of alkylpyridines, a reaction which uses hydrogen peroxide as the oxidizing agent and the water soluble phosphotungstic acid as the catalyst, is a reaction employed in the pharmaceutical industry. The safety concerns of this process revolve around the decomposition of hydrogen peroxide and the liquid-liquid phase separation of the reacting mixture. The decomposition of hydrogen peroxide is an undesired reaction parallel to the desired N-oxidation and is responsible for: 1) a high potential for runaway due to the condition sensitivity of the peroxide group, 2) a potential over-pressurization of the reaction vessel during a runaway due to the production of oxygen, and 3) the enrichment with oxygen of the flammable alkylpyridine environment. The presence of an organic phase and an aqueous phase occurs in a wide range of conditions and results in: 1) a dramatic reduction in the reaction selectivity, and consequently in the efficiency, due to the additional mass transfer constrains imposed by the phase separation, and 2) the safety of the process being seriously compromised because most of the catalyst remains in the aqueous phase, excessively promoting the decomposition of hydrogen peroxide over the N-oxidation. With these concerns in mind, this research aimed to determine conditions for an inherently safer and more efficient N-oxidation reaction and focused on three key targets: i) the possibility of reducing the extend of the decomposition of hydrogen peroxide, thus leading to an inherently safer process, ii) the study of phase equilibrium so as to enable the identification of conditions that increase the efficiency of the N-oxidation and reduces the hazards, and iii) the evaluation of safety parameters that will allow for the control of a potential runaway reaction. Two alkylpyridines were considered: 2-methylpyridine which represents the case of a homogeneous reacting mixture and 2,6-dimethylpyridine to study the two-liquid phase separation effects. The methodology employed calorimetric studies to assess the runaway behavior and to determine the conditions that favor the N-oxidation, and for the N-oxidation of 2,6-dimethylpyridine, thermodynamic studies were incorporated to evaluate the conditions for phase separation.
5

Determining Bounds for a Pressure Hazard Rating to Augment the NFPA 704 Standard

Hodge, Phillip 2011 December 1900 (has links)
Hazard communication is an essential part of a comprehensive safety plan, especially for those facilities that contain reactive chemicals. There are a variety of means of communicating a chemical hazard, but one of the most prevalent in the United States is the Instability Rating found in the NFPA 704 standard. While the NFPA 704 identifies hazards associated with exothermically decomposing compounds, it neglects compounds that decompose endothermicly to form large quantities of gas. Such compounds have been known to cause accidents due to pressure buildup, such as in the BP Amoco Polymers explosion in 2001. In this work, twenty-five compounds were examined via an APTAC to determine their pressure and temperature profiles. These profiles were then used to determine the amount of gas generated, the gas generation rate, the gas generation product, the onset temperature, and the instantaneous power density. These properties were analyzed to determine those that best represented the instability hazard of the chemical. Ultimately, the molar gas generation rate and onset temperature were chosen to rate the selected chemicals, and new cut-offs were established to divide the chemicals into revised instability groupings. Compounds that did not decompose in the temperature range examined were given the rating of zero. Compounds with low onset temperatures and high gas generation rates were assigned the rating of 4, while chemicals with high T_onset and low dn/dt_maxn were assigned a value of 1. Chemicals with high onset temperatures and high gas generation rates were grouped into rating 3. Group 2 included low onset temperature compounds with low gas generation rates. The cut-offs used to define these regions were 130 degrees C for the onset temperature and 0.01 (1/min) for the gas generation rate. The ratings were found to be comparable to the current NFPA system, but improved upon it by providing a valid rating (group 1) for the chemicals that endothermically generated gas. Detailed plots of the data are provided as well as suggestions for future work.

Page generated in 0.0767 seconds