• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 328
  • 216
  • 42
  • 31
  • 30
  • 13
  • 11
  • 8
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 839
  • 839
  • 820
  • 205
  • 201
  • 199
  • 164
  • 137
  • 115
  • 102
  • 77
  • 71
  • 63
  • 59
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The role of reactive oxygen species during erythropoiesis: an in vitro model using TF-1 cells.

January 2009 (has links)
Ge, Tianfang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 87-93). / Abstract also in Chinese. / EXAMINATION COMMITTEE LIST --- p.ii / DECLARATION --- p.iii / ACKNOWLEDGEMENTS --- p.iv / ABSTRACT --- p.v / ABSTRACT IN CHINESE --- p.vii / ABBREVIATIONS --- p.ix / TABLE OF CONTENTS --- p.xiii / Chapter 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Erythropoiesis --- p.2 / Chapter 1.2 --- The TF-1 model --- p.3 / Chapter 1.3 --- The erythroid marker glycophorin A (GPA) --- p.4 / Chapter 1.4 --- Reactive oxygen species (ROS) --- p.4 / Chapter 1.5 --- Oxidative stress in human erythrocytes --- p.6 / Chapter 1.6 --- Antioxidant defense systems --- p.6 / Chapter 1.7 --- Glucose provides the majority of reducing equivalents in human erythrocytes --- p.9 / Chapter 1.8 --- Glucose transporter type 1 (Glut l) transports glucose and vitamin C into human erythrocytes --- p.10 / Chapter 1.9 --- Hypothesis and objectives --- p.11 / Chapter 1.10 --- Long-term significance --- p.12 / Figure 1.1 Stages of mammalian erythropoiesis. Adapted from (Koury et al.,2002) --- p.13 / "Figure 1.2 Conversion of major ROS. Adapted from (Ghaffari," --- p.14 / Figure 1.3 Major oxidative defense in human erythrocytes --- p.15 / "Figure 1.4 Peroxide scavenging systems. Adapted from (Day," --- p.16 / Chapter 2 --- MATERIALS AND METHODS --- p.17 / Chapter 2.1 --- Cell culture --- p.18 / Chapter 2.1.1 --- Culture media --- p.18 / Chapter 2.1.2 --- Cell maintenance --- p.19 / Chapter 2.1.3 --- Cell cryopreservation --- p.19 / Chapter 2.1.4 --- Cell differentiation --- p.20 / Chapter 2.1.5 --- Cell treatments --- p.20 / Chapter 2.1.5.1 --- Antioxidant treatments --- p.21 / Chapter 2.1.5.2 --- H2O2 challenging --- p.22 / Chapter 2.1.5.3 --- Antibiotic treatment --- p.22 / Chapter 2.2 --- Flow cytometry --- p.23 / Chapter 2.2.1 --- Flow cytometers --- p.23 / Chapter 2.2.2 --- Analysis of erythroid differentiation --- p.23 / Chapter 2.2.3 --- Analysis of cell lineage --- p.24 / Chapter 2.2.4 --- Analysis of intracellular ROS --- p.24 / Chapter 2.2.5 --- Analysis of mitochondrial transmembrane potential (Δψm) --- p.25 / Chapter 2.2.6 --- Analysis of mitochondrial mass --- p.25 / Chapter 2.2.7 --- Analysis of cell death --- p.26 / Chapter 2.2.8 --- Analysis of caspase-3 activity --- p.27 / Chapter 2.2.9 --- FACS cell sorting --- p.27 / Chapter 2.2.10 --- Two-variant flow cytometric experiments --- p.28 / Chapter 2.2.11 --- Analysis of flow cytometry data --- p.28 / Chapter 2.2.12 --- Compensation --- p.29 / Chapter 2.2.12.1 --- Compensation matrix for Annexin V-PI double-staining --- p.29 / Chapter 2.2.12.2 --- Compensation matrix for Annexin V-TMRM double-staining --- p.30 / Chapter 2.2.12.3 --- Compensation matrix for CFSE- GPA double-staining --- p.31 / Chapter 2.2.12.4 --- Compensation matrix for CFSE- TMRM double-staining --- p.31 / Chapter 2.2.12.5 --- Compensation matrix for CM- H2DCFDA-GPA double-staining --- p.32 / Chapter 2.2.12.6 --- Compensation matrix for GPA- TMRM double-staining --- p.33 / Chapter 2.3 --- Western blot --- p.35 / Chapter 2.4 --- Statistical analysis --- p.37 / Chapter 3 --- RESULTS AND DISCUSSION --- p.38 / Chapter 3.1 --- The cells with high GPA staining were younger in cell lineage --- p.39 / Chapter 3.2 --- ROS was produced during TF-1 erythropoiesis --- p.40 / Chapter 3.3 --- ROS production was not essential for TF-1 erythropoiesis --- p.41 / Chapter 3.4 --- ROS production was not the cause of cell proliferation during TF-1 erythropoiesis --- p.41 / Chapter 3.5 --- ROS production was not the cause of sub-lethal mitochondrial depolarization in TF-1 erythropoiesis --- p.42 / Chapter 3.6 --- The cells showing mitochondrial depolarization were mother cells that gave rise to differentiating cells --- p.44 / Chapter 3.7 --- ROS production was not the cause of cell death in TF-1 erythropoiesis --- p.45 / Chapter 3.8 --- ROS production confers oxidative defense during TF-1 erythropoiesis --- p.47 / Chapter 3.8.1 --- Glut l inhibition partially blocked TF-1 erythropoiesis without affecting cell viability --- p.47 / Chapter 3.8.2 --- Antioxidant defense systems were established during TF-1 erythropoiesis --- p.48 / Chapter 3.8.3 --- Antioxidant treatments blocked the establishment of antioxidant defense systems during TF-1 erythropoiesis --- p.51 / Chapter 3.9 --- Conclusion --- p.55 / Chapter 3.10 --- Future work --- p.56 / Figure 3.1 Cell lineage versus erythroid marker during erythropoiesis under vitamin E treatment --- p.59 / Figure 3.2 ROS production during erythropoiesis --- p.60 / Figure 3.3 ROS production versus erythroid marker during erythropoiesis under vitamin E treatment --- p.61 / Figure 3.4 Percentage of ROS+ cells in vitamin E-treated TF-1 erythropoiesis as compared to control --- p.63 / Figure 3.5 Percentage of GPA+ cells in vitamin E-treated TF-1 erythropoiesis as compared to control --- p.64 / Figure 3.6 Cell death versus mitochondrial transmembrane potential (Δψm) during erythropoiesis under vitamin E treatment --- p.65 / Figure 3.7 Erythroid marker versus mitochondrial transmembrane potential (Δψm) during erythropoiesis under vitamin E treatment --- p.67 / Figure 3.8 Cell lineage versus mitochondrial transmembrane potential (Δψm) during erythropoiesis under vitamin E treatment --- p.69 / Figure 3.9 Change of mitochondrial mass during erythropoiesis --- p.71 / Figure 3.10 ROS production versus erythroid marker during erythropoiesis under levofloxacin treatment --- p.72 / Figure 3.11 Percentage of GPA+ cells in levofloxacin-treated TF-1 erythropoiesis as compared to control --- p.73 / Figure 3.12 Cell death versus mitochondrial transmembrane potential (Δψm) during erythropoiesis under levofloxac in treatment --- p.74 / Figure 3.13 Expression level of antioxidant enzymes during erythropoiesis --- p.75 / Figure 3.14 Expression level of Glut l during erythropoiesis --- p.76 / Figure 3.15 Expression level of Glut l in GPA positive and GPA negative populations --- p.77 / Figure 3.16 Cell death under oxidative stress challenging during erythropoiesis --- p.78 / Figure 3.17 Expression level of antioxidant enzymes and Glutl during erythropoiesis under EUK-134 treatment --- p.79 / Figure 3.18 Expression level of antioxidant enzymes and Glutl during erythropoiesis under vitamin E treatment --- p.80 / Figure 3.19 Cell death under oxidative stress challenging during erythropoiesis under vitamin E treatment --- p.82 / Figure 3.20 Expression level of antioxidant enzymes during erythropoiesis under vitamin C treatment --- p.83 / Figure 3.21 Cell death under oxidative stress challenging during erythropoiesis under vitamin C treatment --- p.84 / Figure 3.22 Cell death under oxidative stress challenging during erythropoiesis under NAC treatment --- p.85 / Figure 3.23 Summary of oxidative stress challenging during erythropoiesis --- p.86 / REFERENCES --- p.87
12

Low density lipoprotein induction of intracellular oxidants production

Othman, Mohd Izani January 2015 (has links)
Atherosclerosis is a complex cardiovascular disease characterized by chronic progressive inflammation of the arteries. The progression of atherosclerosis from fatty streak to advance atherosclerotic plaque involves the development of a necrotic core region consists of cholesterol, lipids, calcium (Ca²⁺), dead cells and other cellular debris. Macrophage infiltrations occurred in all stages of atherosclerotic progression and they are abundantly found in atherosclerotic plaques. Oxidised low density lipoprotein (oxLDL) plays a vital role in the initiation and development of atherosclerosis. OxLDL is present within atherosclerotic plaque and has been shown to be cytotoxic to various types of cells including macrophages. This research initially examined the cytotoxic effects of copper oxidised LDL on U937, human monocytes and HMDM cells. As expected oxLDL was cytotoxic; causing rapid, concentration and time dependent cell viability loss in all types of cells examined. Examination of the cell morphology showed that oxLDL caused a necrotic like cell death characterised by cell swelling and lysis. Flow cytometric assay coupled with propidium iodide (PI) staining of necrotic cells was compared to MTT reduction assays of cell viability. The flow cytometric technique had the advantage over the MTT reduction assay of being rapid and showing both the live and dead cell levels at an individual cell level. The progression of oxLDL-induced cell death correlated with the rapid increased in intracellular ROS production in the cytosol and the mitochondria. Immunoblotting results showed that oxLDL induced NADPH oxidase (NOX) activation and increased p47phox expression. This suggests NOX as the generator of reactive oxygen species (ROS) induced by oxLDL in these cells. However, apocynin and VAS2870, the two NOX inhibitors used in this study, were unable to inhibit the ROS generation caused by the oxLDL. This suggests that either these inhibitors are unable to inhibit the targeted NOX or other sources of ROS might exist and contributed to the overall increase in oxidative flux. OxLDL caused a rapid increase in cytosolic Ca²⁺ level. This was contributed by the extracellular Ca²⁺ source as well as Ca²⁺ mobilisation from the intracellular stores such as endoplasmic reticulum (ER). OxLDL-induced intracellular Ca²⁺ increase also correlated with the increase in intracellular ROS. Nevertheless, blocking of oxLDL-induced intracellular Ca²⁺ elevation by Ca²⁺ chelator, EGTA, did not reduce intracellular ROS generation. Accordingly, this suggests that oxLDL-induced intracellular Ca²⁺ increase is not the cause for oxLDL-induced cell death. Additionally, oxLDL may also initiate a Ca²⁺-independent cell death pathway. The excess cytosolic Ca²⁺ taken up by the mitochondria may be detrimental and could result in mitochondrial Ca²⁺ overload. This will increase mitochondrial ROS production and initiate mitochondrial permeability transition (MPT) pores opening. Consequently, this could collapse the mitochondrial membrane potential ( m) due to the rupture of outer mitochondrial membrane (OMM) and resulted in cell death. Blocking of Ca²⁺ uptake into the mitochondria by ruthenium red protected cells from oxLDL-mediated cell death, possibly by reducing ROS production and preventing MPT activation. This study also demonstrated the protective effect of 7,8-dihydroneopterin (7,8-NP) on oxLDL-induced oxidative stress. 7,8-NP protected cells from oxLDL-induced intracellular ROS generation and cell viability loss. Intracellular Ca²⁺ increase was also reduced by 7,8-NP in particular after 3 hours incubation with oxLDL. The action of 7,8-NP was better than that of apocynin in protecting U937 cells from oxLDL suggests its potential ability to scavenge ROS from various sources. Studies have implicated the involvement of H₂S in various biological processes including atherosclerosis. Thus, the disruption of H₂S homeostasis may contribute to the progression of atherosclerosis. Slow releasing H₂S molecules (H₂S donors) have been developed for a controlled and stable delivery of H₂S to cells. In this study, specific H₂S donors, including one which targets the mitochondria, were found to be protective against oxLDL-induced cell death in U937, human monocytes and HMDM cells. Although the exact mechanism is yet to be elucidated, these H₂S donors were shown to block the elevation of intracellular Ca²⁺ and ROS production mediated by oxLDL. Therefore, these H₂S donors could be the potential candidates for future development of therapeutics in treating atherosclerosis.
13

Mitochondrial Antioxidants, Protection Against Oxidative Stress, and the Role of Mitochondria in the Production of Reactive Oxygen Species

Rogers, Kara Emilie January 2006 (has links)
Mitochondria serve as the major source of reactive oxygen species (ROS) production in cells resulting in antioxidant systems and cell signaling pathways that are unique to mitochondria. Thioredoxin-2 (Trx-2) is the mitochondrial member of the thioredoxin superfamily, and acts specifically to reduce the mitochondrial peroxidase, peroxiredoxin-3. It has been proposed that Trx-2 associates with cytochrome c, which functions in mitochondrial respiration and apoptosis. Homozygous Trx-2 deletion in mice is embryonic lethal and it is hypothesized here that Trx-2 lethality is caused by loss of mitochondrial function and oxidative stress. Results of experiments investigating mitochondrial integrity, cell viability, and ROS levels in Trx-2(-/-) mouse embryonic fibroblasts (MEFs), and results from Trx-2 siRNA MEFs, are similar to findings of knockouts in previously reported proteins that function in mitochondrial respiration and support the involvement of Trx-2 in this process. Mitochondrial ROS have also been implicated as major secondary messengers in cell signaling. Results reported here using cancer cells and cancer cells depleted of mitochondrial DNA, which consequently produce few ROS, have indicated that mitochondrial ROS produced in hypoxia are necessary for HRE and ARE activation, and are fundamental in the activation of SP-1 during reoxygenation. However, mitochondrial ROS are not required for HIF-1α protein expression in hypoxia, indicating a unique relationship between HIF-1α, hypoxia, and mitochondrial ROS.
14

Oxidative Status and Hypertension: An Examination of the Prospective Association Between Urinary F2-isoprostanes and Hypertension

Melton, Charles 09 January 2015 (has links)
Background: Hypertension is a pathological increase in blood pressure that affects nearly 30% of the U.S. population and is a primary modifiable risk factor for cardiovascular disease. Despite advancements in prevention and treatment, hypertension is still one of the most common conditions around the world, and for a majority of cases the causal mechanisms remain to be fully elucidated. A growing body of literature suggests that oxidative stress status may play an etiological role in many chronic conditions, including hypertension. Specifically, a systemic overabundance of reactive oxygen species may give rise to endothelial dysfunction, increased sodium and H2O retention, and alterations in sympathetic outflow, leading to an increase in blood pressure. Purpose: The main objective of this study is to investigate the prospective association between F2-isoprostanes, a validated biomarker of oxidative status, and development of hypertension in a large, multi-centered, multi-ethnic cohort of adults aged 40-69 at baseline. Methods: This is a secondary data analysis that utilized previously collected data from the Insulin Resistance Atherosclerosis Study. 844 participants were included in the analysis. Briefly, four urinary F2-isoprostane isomers (F2-IsoP1, F2-IsoP2, F2-IsoP3, and F2-IsoP4) were quantified using liquid chromatography/ tandem mass spectrometry and adjusted for urinary creatinine levels. Hypertension was assessed at baseline and follow-up visits and defined as systolic blood pressure > 140 mm Hg and/or diastolic blood pressure > 90 mm Hg and/or currently taking antihypertensive medications. Crude associations between study population characteristics and hypertensive status were analyzed with the chi-square and Wilcoxon-rank sum tests. Crude associations between study population characteristics and F2-isoprostane levels were analyzed with Wilcoxon-rank sum, Kruskal-Wallis, and Spearman’s rank correlation measures. Finally, the adjusted prospective associations between hypertensive status and F2-isoprostane concentrations were modeled using logistic regression. Results: Of the 844 participants who were included in the study, 258 (31%) were classified as hypertensive at baseline. Among the 586 participants who were normotensive at baseline, 123 (21%) developed hypertension over the five-year study period. Importantly, none of four F2-isoprostane isomers predicted a significant increase in the odds of developing hypertension, as indicated by their odds ratio 95% confidence intervals; F2-IsoP1: (0.85, 1.31), F2-IsoP2: (0.62, 1.13), F2-IsoP3: (0.80, 1.27), and F2-IsoP4: (0.84, 1.29). Conclusion: Previous studies have investigated the association between oxidative status and hypertension prevalence, however the cross sectional nature of the study designs have made it difficult to establish temporality between exposure and outcome. To our knowledge, this is the first study to model the odds of developing hypertension as a function of F2-isoprostane levels. The results of this study suggest that oxidative status is not involved in the development of hypertension.
15

High Glucose-induced ROS Production is Mediated by c-Src in Mesangial Cells

Lee, Ken Wing Kin 04 December 2012 (has links)
The pathogenesis of diabetic nephropathy (DN) remains incompletely understood. In previous studies, we observed the activation of Tyr kinase Src by high glucose (HG) and showed that Src is required for MAPK activation and synthesis of collagen IV in cultured rat mesangial cells (MCs). Reactive oxygen species (ROS) are also important mediators of DN, and our present study aimed to investigate the role of Src in HG-induced ROS generation. In MCs, we found that HG led to ROS accumulation that was blocked by Src inhibitors or Src-specific siRNA. Downstream of Src, Vav2 was phosphorylated/activated leading to Rac1-dependent NADPH oxidase activation. Long-term HG exposure resulted in Src-dependent Nox4 protein induction. Nox2-specific siRNA abrogated ROS production only in short-term HG, while Nox4-specific siRNA blocked ROS production only in long-term HG. Taken together, our data indicate Src to be important in mediating ROS generation from both Nox2- and Nox4-containing NADPH oxidases.
16

High Glucose-induced ROS Production is Mediated by c-Src in Mesangial Cells

Lee, Ken Wing Kin 04 December 2012 (has links)
The pathogenesis of diabetic nephropathy (DN) remains incompletely understood. In previous studies, we observed the activation of Tyr kinase Src by high glucose (HG) and showed that Src is required for MAPK activation and synthesis of collagen IV in cultured rat mesangial cells (MCs). Reactive oxygen species (ROS) are also important mediators of DN, and our present study aimed to investigate the role of Src in HG-induced ROS generation. In MCs, we found that HG led to ROS accumulation that was blocked by Src inhibitors or Src-specific siRNA. Downstream of Src, Vav2 was phosphorylated/activated leading to Rac1-dependent NADPH oxidase activation. Long-term HG exposure resulted in Src-dependent Nox4 protein induction. Nox2-specific siRNA abrogated ROS production only in short-term HG, while Nox4-specific siRNA blocked ROS production only in long-term HG. Taken together, our data indicate Src to be important in mediating ROS generation from both Nox2- and Nox4-containing NADPH oxidases.
17

In a mouse model of Dravet Syndrome, mitochondrial dysfunction may contribute to SUDEP.

Aldridge, Jessa L, Alexander, Emily Davis, Franklin, Allison, Frasier, Chad R 25 April 2023 (has links)
Dravet syndrome (DS) is a severe, pediatric-onset epilepsy disorder linked to loss-of-function mutations in the sodium channel gene SCN1B. DS patients have a high risk of Sudden Unexpected Death in Epilepsy (SUDEP). Cardiac arrhythmias have been implicated as a potential cause underlying SUDEP. An exact pathway for how mutations in SCN1B leads to arrhythmia in DS is unclear. One cellular component linked to regulation of cardiac homeostasis are mitochondria, known as “the powerhouse of the cell” due to their ability to produce cellular energy (ATP) via the electron transport chain (ETC). The ETC is a major producer of reactive oxygen species (ROS). Typically, ROS are buffered by cellular antioxidants, to prevent oxidative stress, an imbalance of ROS that can lead to cell damage. Our previous work indicates that cardiac arrhythmias may result from mitochondrial instability and imbalances between ROS production and buffering. We analyzed whether Scn1b-/-mice are susceptible to arrhythmias due to altered mitochondrial ATP generation, ROS production, and compromised cellular antioxidant defenses. We isolated cardiac mitochondria from postnatal day (P) 15-20 KO and Scn1b+/+ (WT) mice. To assess mitochondrial ATP and ROS production, high-resolution respirometry (O2k, Oroboros) was used to measure mitochondrial O2 and H2O2 flux. We used a substrate-uncoupler inhibitor (SUIT) protocol to elucidate flux under different ETC pathways, including Complex I- and II-linked respiration. As a next step, we evaluated expression of superoxide dismutase (Sod) proteins associated with mitochondrial antioxidant defenses, including Cu/Zn-Sod (Sod1) and Mn-Sod (Sod2) in hearts from KO and WT mice pre- (P10) and post- (P17) seizure development. After addition of substrates supporting Complex-II linked respiration (succinate, ADP) there were no differences in O2 flux between mitochondria isolated from KO and WT hearts. Upon further addition of pyruvate to mitochondria to stimulate Complex I, O2 flux was significantly reduced (p < 0.0001) in mitochondria from KO mice, when compared to WT. Moreover, upon titration of rotenone (a Complex I inhibitor) its negative effect on O2 flux was not as substantial in KO mitochondria as in WT, suggesting that mitochondria from KO have deficits in Complex-I linked respiration. Furthermore, we detected significant differences in ROS production by mitochondria isolated from KO animals. Under conditions of reverse electron flow (succinate as substrate), a state where ROS production is highest, H2O2 flux was elevated significantly (p = 0.048) in mitochondria isolated from KO mice, compared to those isolated from WT. During our analysis of Sod expression, we found that Sod1 (p = 0.01) and Sod2 (p = 0.01) expression is significantly decreased at P17 in KO hearts compared to WT. Overall, our results suggest imbalances between mitochondrial activity and antioxidant defenses, which may underlie increased arrhythmia susceptibility in KO mice.
18

Physiological, biochemical, and molecular responses to copper stress in different strains of the model brown alga Ectocarpus siliculosus

Sáez Avaria, Claudio January 2014 (has links)
Brown algae have been the focus of metal ecotoxicology research for over 60 years, mainly because of their high metal accumulation capacity and reputed resistance. Now that Ectocarpus siliculosus has been positioned as a model for the study of brown algae, and that the genome has been recently sequenced and annotated, new lines of research have been made possible on these ecologically and economically important organisms, including the field of ecotoxicology. Several strains of E. siliculosus have been collected and isolated from locations around the world, thus providing the opportunity to study inter-population differences in their responses to environmental stress. This investigation can be split into three main sections. In the first part Cu exposure experiments were carried out under laboratory conditions using three strains of E. siliculosus: Es524 from a Cu polluted location in Chile, REP10-11 from a metal polluted (including Cu) location in England and LIA4A from a pristine site in Scotland. Strains were exposed for 10 d to concentrations ranging between 0 and 2.4 μM Cu. We measured different parameters: relative growth rates; metal accumulation (extracellular and intracellular); phytochelatins and the expression of related enzymes; oxidative stress responses as manifested in lipid peroxidation and levels of H2O2, and levels of pigments; levels of antioxidants glutathione and ascorbate (in reduced and oxidised forms), and phenolic compounds; and the activity of the antioxidant enzymes superoxide dismutase, catalase, and ascorbate peroxidise. Strain Es524 was the most efficient in counteracting the effects of Cu stress as manifested by a combination of Cu exclusion production of metal chelators, upregulation of oxidative enzymes, and strong antioxidant metabolism. REP10-11 also showed effective Cu defences, especially related to glutathione-ascorbate interactions. LIA4A was the least tolerant strain, with metabolic defences significantly less effective against Cu exposure. In part two a novel transplantation experiment was developed to compare responses in the field with those obtained in the laboratory. The study was carried out at a metal polluted and a low-impacted site in central Chile using strain Es524 (as in the laboratory experiments) and Es147, isolated from a low metal-polluted site in Chile. From the biomass, we conducted similar measurements of Reactive Oxygen Metabolism (ROM) as for the laboratory experiments described in the first part. In agreement with the laboratory experiments, strain Es524 displayed a higher resistance to metal stress. Because they behaved similarly between strains, the best suggested biomarker candidates for future assessments are metal accumulation, glutathione and ascorbate in reduced and oxidised forms, phenolic compounds, and the activity of superoxide dismutase. The method is simple, widely applicable in temperate environments, cost-effective, and provides a reliable representation of metal bioavailability in the environment. In the final part of the study a novel technique for the co-extraction of RNA and DNA, using a high pH Tris-HCl buffer, from small amounts of biomass of different strains of E. siliculosus was successfully developed. The extraction of nucleic acids from brown algae is considered to be difficult and the product is of poor quality due to the high concentrations of interfering secondary metabolites such as phenolics and polysaccharides. The protocol devised here provided high yields of pure RNA and DNA that are suitable for molecular analyses. This investigation provides new insights on metal stress metabolism in brown algae, and demonstrates that metal resistance is dependent on inherited defences developed over a long history of exposure. Furthermore, the good agreement between the results obtained in the laboratory with those from the field study confirms that the responses expressed under controlled laboratory conditions are representative of stress metabolism of E. siliculosus under natural conditions.
19

Mechanisms and applications of photoinduced processes in fluorescent proteins

Vegh, Rusell 13 November 2012 (has links)
In the current work, the photophysics and photochemistry of the phototoxic red fluorescent protein (RFP) KillerRed was investigated. KillerRed's phototoxicity makes it useful for studying oxidative stress on cell physiology and for cell killing in photodynamic therapy. Spectroscopic probes were used to show that the phototoxicity of KillerRed stems primarily from a type I photosensitization mechanism producing radicals. The production of radicals was supported by electron paramagnetic resonance (EPR) studies, where a long-lived radical was observed in KillerRed and two other RFPs (mRFP and DsRed) following excitation. Transient absorption spectroscopy, various other spectroscopic techniques, and the published crystal structure of KillerRed indicate that the long-filled water channel is likely responsible for the increased phototoxicity of KillerRed. In the blue fluorescent protein (BFP) mKalama1, some of the same techniques were applied to understand the photophysics and photochemistry on the timescale ranging from femtoseconds to seconds. Transient absorption spectroscopy and previously published results demonstrate that two-photon excitation of mKalama1 likely results in the formation of a radical cation and solvated electrons. This may explain the blinking behavior which has been observed on the single molecule level for many fluorescent proteins, the identity of which has remained elusive. It was also shown that the chromophore, while neutral in the ground state, does not exhibit excited-state proton transfer (ESPT) during its nanosecond excited-state lifetime; however, the chromophore undergoes a deprotonation in the ground state after electronic relaxation. This work plays a key role in our understanding of fluorescent proteins and will help pave the way to developing new ones. The research on the BFPs was extended to improve them for cellular imaging. This was accomplished by identification of dark states in the BFPs which are longer in wavelength than the collected fluorescence. Using dual lasers, it was shown that these dark states could be optically depleted, thereby increasing the overall fluorescence without enhancing the background fluorescence. Rational site-directed mutagenesis was carried out on the BFPs and the mutants were screened for fluorescence enhancement. These proteins were then analyzed using transient absorption spectroscopy to elucidate the identity of the dark state(s) used for fluorescence enhancement.
20

Study of the molecular details of p53 redox-regulation using Fourier transform ion cyclotron resonance mass spectrometry

Scotcher, Jenna January 2011 (has links)
Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and superoxide (O2 • −) have been shown to serve as messengers in biological signal transduction, and many prokaryotic and eukaryotic proteins are now known to have their function controlled via ROS-mediated oxidation reactions occurring on critical cysteine residues. The tumour-suppressor protein p53 is involved in the regulation of a diverse range of cellular processes including apoptosis, differentiation, senescence, DNArepair, cell-cycle arrest, autophagy, glycolysis and oxidative stress. However, little is understood about the specific molecular mechanisms that allow p53 to discriminate between these various different functions. p53 is a multiple cysteine-containing protein and there is mounting evidence to suggest that redox-modification of p53 Cys residues participate in control of its biological activity. Furthermore, p53 activity has been linked to intracellular ROS levels. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) offers superior mass resolving power and mass measurement accuracy, which is beneficial for the study of intact proteins and the characterisation of their posttranslational modifications (PTMs). The primary goal of the work described in this thesis was to employ FT-ICR mass spectrometry to investigate the molecular details of p53 redox-regulation. The relative reactivity of each of the ten cysteine residues in the DNA-binding core domain of recombinant human p53 was characterised by treatment with the Cys-alkylating reagent N-ethylmaleimide (NEM) under various conditions. A combination of top-down and middle-down FT-ICR MS was used to unambiguously identify Cys182 and Cys277 as sites of preferential alkylation. These results were confirmed by site-directed mutagenesis. Interestingly, Cys182 and Cys277 have previously been implicated in p53 redox-regulation. Alkylation beyond these two residues was found to trigger rapid alkylation of the remaining Cys residues, presumably accompanied by protein unfolding. These observations have implications for the re-activation of mutant p53 with Cys-targeting compounds which result in the death of cancer-cells. Furthermore, the molecular interaction between p53 and the ROS hydrogen peroxide was investigated. p53 was found to form two disulfide bonds upon treatment with H2O2. An enrichment strategy was developed to purify oxidised p53 and top-down FT-ICR mass spectrometry revealed unambiguously that Cys176, 182, 238 and 242 were the oxidised residues. Interestingly, Cys176, 238 and 242 are Zn2+- binding residues suggesting that p53 contains a zinc-redox switch. The mechanism of H2O2 oxidation was investigated, and revealed that oxidation via an alternative pathway results in indiscriminate over-oxidation of p53. Moreover, Cys176, 238 or 242 was shown to act as a nucleophile, and the intracellular antioxidant glutathione (GSH) did not prevent oxidation of the Zn2+-binding Cys residues, providing further evidence for a role in p53 redox-regulation. This study has revealed hitherto unknown details regarding the chemistry of cysteine residues within the important tumour-suppressor protein p53. Furthermore, the analytical power of FT-ICR MS for the study of multiple Cys-containing proteins has been very clearly demonstrated.

Page generated in 0.0546 seconds