Spelling suggestions: "subject:"deactive exygen 1species (mROS)"" "subject:"deactive exygen 3species (mROS)""
1 |
Détection hypothalamique de l'hyperglycémie : rôle de la dynamique mitochondriale dans la signalisation par les espèces actives de l'oxygène / Hypothalamic glucose sensing : mitochondrial dynamic involument in reactive oxygen species signalingCarneiro, Lionel 27 September 2011 (has links)
L’homéostasie énergétique se définit comme le maintien de l’équilibre entre les apports et les dépenses d’énergie. La régulation nerveuse de cet équilibre est principalement assurée par l’hypothalamus. Il existe dans cette structure des neurones spécialisés dont l’activité électrique est modifiée par des signaux nerveux, métaboliques et hormonaux.Nous avons travaillé sur la détection du glucose dans cette structure, qui permet l’élaboration d’une réponse adaptée en termes de prise alimentaire et de contrôle du métabolisme. Lors de cette détection, l’utilisation du glucose conduit à la formation d’Espèces Actives de l’Oxygène d’origine mitochondriale (mEAOs) par la chaîne respiratoire mitochondriale (CRM), constituant une signalisation redox indispensable aux réponses physiologiques. De récentes études in vitro (cultures de myoblastes, hépatocytes) ont par ailleurs mis en évidence le rôle de la dynamique mitochondriale, qui contrôle la morphologie des mitochondries par des mécanismes de fission et de fusion, sur la production de mEAOs induite par une hyperglycémie. Cette dernière déclenche la fission des mitochondries de façon concomitante à la production de mEAOs. En revanche, le blocage de la fission empêche la production de mEAOs lors de l’hyperglycémie dans ces cultures. Ces études suggéraient donc que la fission soit déclenchée par l’hyperglycémie et permette alors la production de mEAOs. Mon projet de thèse a consisté à déterminer l’implication de la dynamique mitochondriale dans la signalisation mEAOs lors de la détection hypothalamique du glucose. Nos résultats nous ont permis de mettre en évidence, dans un premier temps, un adressage de la protéine de fission DRP1 à la mitochondrie dans l’hypothalamus lors d’une hyperglycémie cérébrale, évènement nécessaire au déclenchement de la fragmentation des mitochondries. Cette fragmentation est confirmée en imagerie où l’analyse morphologique montre des mitochondries plus petites, plus sphériques et moins allongées que celles des témoins. Dans un deuxième temps, nous avons déterminé l’implication de cette fission mitochondriale dans la détection hypothalamique du glucose. Son importance a pu être évaluée en bloquant la fission des mitochondries par l’inhibition de l’expression de la protéine de fission DRP1 spécifiquement dans le VMH, par interférence ARN. Cette stratégie nous a permis d’obtenir une inhibition de l’expression de DRP1 de près de 80%, 72h après l’injection. Cette inhibition est localisée au VMH et a pour conséquence une élongation des mitochondries qui présente un réseau mitochondrial plus filamenteux. L’étude du phénotype des animaux a mis en évidence une hyperphagie associée à l’inhibition de la fission mitochondriale dans le VMH. Cette hyperphagie n’entraine cependant aucune modification du poids corporel. Ceci suggère une augmentation des dépenses énergétiques chez ces animaux. De plus, ils présentent une perte de sensibilité hypothalamique au glucose qui conduit à un défaut du contrôle nerveux de la sécrétion d’insuline, ainsi qu’à une perte de l’effet satiétogène du glucose lors d’un test de réalimentation. Nous montrons que cette perte de sensibilité au glucose est due à un défaut de production hypothalamique des mEAOs en réponse au glucose, production qui est nécessaire à la signalisation responsable des réponses effectrices. Ce défaut de production de mEAOs est associé à un dysfonctionnement de la CRM. L’ensemble de ce travail permet donc de montrer pour la première fois, in vivo, que la fission mitochondriale est indispensable à la production hypothalamique de mEAOs lors d’une hyperglycémie cérébrale. Cette production est nécessaire au déclenchement du contrôle nerveux permettant d’une part la sécrétion d’insuline et d’autre part le rassasiement induit par le glucose intra-hypothalamique. / Energetic homeostasis results in the balance between energy intake and expenditure. The hypothalamus plays an important role in the regulation of both energetic metabolism and food intake in sensing hormonal and metabolic signals. For instance, changes in hypothalamic glucose level modulate food intake and insulin secretion. We have previously found that 1) increased hypothalamic glucose level triggers production of mitochondrial reactive oxygen species (mROS) from the electron transport chain; 2) hypothalamic mROS production is involved in glucose homeostasis and food intake control. The molecular mechanisms involved in glucose-induced hypothalamic mROS production are still unknown. Mitochondrial dynamics control mitochondrial morphology through fission or fusion mechanisms. Recent in vitro studies have shown that mitochondrial fission is involved in glucose-induced myoblasts and hepatocytes mROS production. The main hypothesis of my thesis was that mitochondrial dynamics were involved in 1) hypothalamic glucose-induced mROS signaling and 2) hypothalamic glucose sensitivity.We first showed in vivo that increased hypothalamic glucose level in response to an intracarotid glucose injection induces recruitment of the mitochondrial fission protein DRP1 at the mitochondria and triggers mitochondrial fragmentation. The second part of my work was to determine whether mitochondrial fission is involved in hypothalamic glucose sensitivity. Therefore, we inhibited DRP1 expression in the ventromedial hypothalamus (VMH) by siRNA injection. 72h post siDRP1 injection, VMH DRP1 expression was decreased by 80%. At this time, we found that increased hypothalamic glucose level failed to increase hypothalamic mROS production. In addition, intracarotid glucose injection-induced insulin secretion was decreased. Finally, VMH glucose injection-induced food intake inhibition was attenuated in siDRP1 treated animals. In a last set of experiments, we found ex vivo by oxygraphy that hypothalamic mROS production is associated with electron transport chain dysfunction. Altogether, our work shows for the first time that mitochondrial fission is involved in mROS dependent hypothalamic glucose sensitivity. Furthermore, this work demonstrates that mitochondrial fission plays a critical role in the regulation of glucose homeostasis and food intake.
|
Page generated in 0.0484 seconds