• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 324
  • 210
  • 41
  • 31
  • 29
  • 12
  • 11
  • 8
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 813
  • 813
  • 813
  • 200
  • 196
  • 194
  • 160
  • 134
  • 113
  • 101
  • 76
  • 70
  • 62
  • 59
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Exploring the role of 4-hydroxy-2-nonenal and mitochondrial dysfunction in diabetic neuropathy

Akude, Eli Kwaku 07 March 2011 (has links)
In diabetes hyperglycemia and lack of insulin signaling are key factors in the induction of diabetic sensory neuropathy. The combination of these factors in diabetes may enhance oxidative stress and trigger distal nerve damage in the peripheral nervous system. The link between elevated reactive oxygen species (ROS) levels and nerve degeneration is not clear. We tested the hypothesis that elevation of 4-hydroxy-2-nonenal (4-HNE) induced by oxidative stress in diabetes impairs mitochondrial activity and axonal regeneration in dorsal root ganglion (DRG) neurons. Also, we investigated the association between mitochondrial dysfunction and altered mitochondrial proteome in the axons of streptozotocin–induced diabetic rats. Research design and methods. Cultured adult rat DRG sensory neurons were treated exogenously with 4-HNE, and cell survival, axonal morphology, and level of axon outgrowth assessed. Western blot and fluorescence imaging were used to determine changes in the levels of adducts of 4-HNE and abnormalities in the mitochondria. Proteomic analysis using stable isotope labeling with amino acids in cell culture (SILAC) determined expression of proteins in the mitochondria. Results. 4-HNE impaired axonal regeneration, mitochondrial activity and induced aberrant axonal structures along the axons, which mimicked axon pathology observed in nerve isolated from diabetic rats and replicated aspects of neurodegeneration observed in human diabetic neuropathy. Proteins associated with mitochondrial dysfunction, oxidative phosphorylation and biosynthesis were down regulated in diabetic samples. The axons of diabetic neurons exhibited oxidative stress and depolarized mitochondria. CNTF and resveratrol reversed abnormalities in the mitochondrial membrane potential induced by diabetes and treatment of neurons with 4-HNE. CONCLUSIONS. Elevation of 4-HNE levels in diabetes was associated with impaired mitochondrial function and might be an important link between increased ROS levels and nerve degeneration in diabetic neuropathy. Abnormal mitochondrial function correlated with a down-regulation of mitochondrial proteins, with components of the respiratory chain targeted in lumbar DRG in diabetes. The reduced activity of the respiratory chain was associated with diminished superoxide generation within the mitochondrial matrix and did not contribute to oxidative stress in axons of diabetic neurons.
182

IDENTIFICATION OF SIGNALING FACTORS INVOLVED IN THE REGULATION OF ALKALOID METABOLISM IN N. TABACUM

Sachan, Nita 01 January 2004 (has links)
To identify the signaling mechanisms and components that are involved in regulation of a promoter for a gene involved in a secondary pathway I studied the nicotinic alkaloid biosynthetic pathway using various N. tabacum tissues. Nicotine and tropane alkaloids are widely known to be synthesized predominantly in the roots of species that produce pyrrolinium ring containing alkaloids. Putrescine Nmethyltransferase (PMT) catalyzes the first committed step in the biosynthesis of these alkaloid secondary products and earlier studies have indicated that PMT gene expression is restricted to root tissue in Solanaceae plants. To further elucidate the factors that govern the regulation of alkaloid synthesis, expression patterns dictated by the 5'-flanking region of one of the members of the PMT -gene family, NsPMT3, using the b-glucuronidase (GUS) reporter gene were examined. Various treatments were used to characterize the nature of signaling in various tissues of seedlings, whole plants and callus. High expression levels were detected in root tissue and no expression was detected in leaves, in agreement with previous studies. However, mechanically wounded leaves resulted in highly localized PMT expression. This wound-induced expression was transient, with maximum levels occurring immediately after wounding and diminishing after approximately 24 h. RT-PCR analysis of mRNA isolated from wild-type plants also indicated upregulation of PMT expression in leaves upon wounding as well as very low transcript levels in unwounded leaves. Low levels of PMT activity were detected in leaf tissue, and this activity did not increase significantly upon wounding. Transgenic callus material showed strong repression of PMT promoter activity in the presence of light and auxin, whereas dark conditions and the absence of auxin upregulated PMT promoter activity. Reactive oxygen species have been implicated in signaling. When treated with the scavengers of reactive oxygen species (ROS), dimethylthiourea (DMTU) or catalase, tobacco callus tissue, which displays highly repressed alkaloid synthesis under normal culture conditions in the light, exhibited significant induction of PMT promoter activity and alkaloid accumulation. It is thought that light repression signals through an ROS intermediate to affect changes in alkaloid pathway gene expression. Upregulation of PMT-promoter activity was observed upon treatment with JA (jasmonic acid) or darkness in roots of very young transgenic seedlings. Treatment with auxin, salicylic acid (SA) and H2O2, on the other hand, was found to highly repress PMT promoter activity. Action of other ROS such as nitric oxide and superoxide radicals on PMT expression is not clear but probably play less of a role, compared to H2O2. Consistent with this content ion, treatment with light or glucose oxidase (GOX) and glucose to generate H2O2, also repressed alkaloid accumulation, and treatment of seedlings to dark conditions, the ROS scavenger DMTU, or jasmonic acid resulted in alkaloid accumulation. Long distance signaling from leaves to roots is also suspected to involve ROS, as leaves treated with GOX and glucose exhibited repressed PMT promoter activity in roots. The responses of the PMT promoter to auxin, salicylic acid and H2O2 treatments were conserved as sho wn by similar responses of the N. tabacum PMT promoter when examined in transgenic Arabidopsis, thereby suggesting that these molecules signal through a conserved mechanism. Thus, ROS is strongly implicated in acting as an intermediate in these signaling processes with H2O2 proposed as a major signaling component.
183

TARGETING THE METAL CHELATOR D-PENICILLAMINE TO EXPLOIT THE ELEVATED COPPER AND OXIDATIVE STRESS ASSOCIATED WITH CANCER

Gupte, Anshul 01 January 2008 (has links)
The significantly increased copper and oxidative stress levels are characteristic hallmarks of cancer cells. These differences provide a unique opportunity for selective targeting of cancer cells. D-penicillamine (D-pen) has been proposed to generate reactive oxygen species (ROS) in presence of copper. Therefore, these studies were aimed at investigating the potential application of a currently marketed copper chelator, D-pen, as a novel cytotoxic anti-cancer agent. D-pen was shown to produce ROS, specifically hydrogen peroxide (H2O2), in the presence of cupric sulfate through a copper catalyzed oxidation reaction. During this process D-pen was converted to D-pen disulfide. The experimental proof of the H2O2 generation was conclusively shown with the aid of a novel High Performance Liquid Chromatography (HPLC) assay. The in-vitro cytotoxicity of D-pen co-incubated with cupric sulfate was examined in human beast cancer (MCF-7 and BT474) and leukemia cells (HL-60, HL-60/VCR, and HL-60/ADR). D-pen was shown to cause concentration dependent cytotoxicity in both leukemia and breast cancer cells. A direct correlation between the detection of intracellular ROS and cytotoxicity was established. The treatment of D-pen plus cupric sulfate resulted in a significant reduction in the intracellular thiol content. D-pen is highly hydrophilic and is rapidly eliminated from the body; therefore to improve the intracellular uptake and to protect the thiol group of D-pen, we carried out the synthesis and the in-vitro characterization of a novel gelatin-D-pen conjugate. It was shown that D-pen alone does not enter cells. Confocal microscopy was employed to exhibit the uptake of the novel gelatin-D-pen conjugate by cancer cells. As the cancer cells in-vitro do not accumulate the same levels of copper as reported for cancer cells in-vivo, cancer cells were pre-treated with cupric sulfate to simulate the elevated copper levels. The cupric sulfate pretreatment resulted in reduced thiol level and significantly increased cellular copper content compared to untreated cells. Whereas both free D-pen and gelatin-D-pen conjugate lacked cytotoxicity in un-treated cells, both agents caused concentration dependent cytotoxicity in cupric sulfate pre-treated leukemia cells. Therefore, it was shown that the administration of D-pen as polymer conjugate would potentially provide cytotoxicity and specificity in the treatment of cancer.
184

Antibacterial Strategies for Titanium Biomaterials

Unosson, Erik January 2015 (has links)
Titanium and titanium based alloys are widely used in dentistry and orthopedics to replace hard tissue and to mend broken bones. It has become a material of choice due to its low density, high strength, good biocompatibility and its capacity to integrate closely with the bone. Today, modern materials and surgical techniques can enable patients to live longer, and aid in maintaining or regaining mobility for a more fulfilling life. There are, however, instances where implants fail, and one of the primary causes for implant failure is infection. This thesis deals with two possible ways of reducing or eliminating implant associated infections; TiO2 photocatalysis, where a surface can become antibacterial upon irradiation with UV light; and incorporation of silver, where a subsequent release of silver metal ions result in an antibacterial effect. For the TiO2 photocatalysis strategy, a simple and cost effective chemical oxidation technique, using hydrogen peroxide (H2O2) and water, was used to create an active TiO2 surface on titanium substrates. This surface was shown to effectively degrade an organic model substance (rhodamine B) by generating reactive oxygen species (ROS) under UV illumination. However, it was shown that Ti-peroxy radical species remaining in the surface after the H2O2-oxidation process, rather than generation of ROS from a heterogeneous photocatalytic process, was responsible for the effect. This discovery was further exploited in a TiO2/H2O2/UV system, which demonstrated synergy effects in both rhodamine B degradation tests and in antibacterial assays. For the silver ion release strategy, a combinatorial materials science approach was employed. Binary Ag-Ti oxide gradients were co-deposited in a reactive (O2) environment using a custom built physical vapor deposition system, and evaluated for antibacterial properties. The approach enabled synthesis and composition-structure-property evaluation unlikely to have been achieved by traditional means, and the gradient coatings demonstrated antibacterial properties against both S. aureus and S. epidermidis according to silver ion release. The release was shown to depend more on structural features, such as surface area, crystallinity and oxidation state, than on composition. Ag-Ti oxide gradients were also evaluated under UV illumination, as Ag deposits on crystalline TiO2 can enhance photocatalytic properties. In this work, however, the TiO2 was amorphous and UV illumination caused a slight reduction in the antibacterial effect of silver ions. This was attributed to a UV-induced SOS response in the S. epidermidis bacteria. The results of this thesis demonstrate that both TiO2 photocatalysis, or UV induced activation of Ti-peroxy radical species, as well as incorporation of silver are viable antibacterial strategies for titanium biomaterials. However, their clinical applications are still pending risk-benefit analyses of potential adverse host tissue responses.
185

Analysis of metallothionein gene expression in oxidative stress related disorders / by Boitumelo Semete

Semete, Boitumelo January 2004 (has links)
Increased reactive oxygen species (ROS) have been reported to be at the centre of various diseases. Although several reports have implicated elevated levels of ROS in the pathogenesis of diabetes mellitus, the early detection of ROS is still not attainable. This limitation causes difficulty in the early diagnosis of ROS related disorders. The presence of high levels of ROS was reported to result in differential expression of antioxidant genes involved in protecting cells from their deleterious effects. Among the antioxidant genes that are expressed, it was postulated that expression of metallothioneins (MTs) are also induced. MTs are low molecular weight, cysteine-rich proteins involved in metal homeostasis and reported to harbour antioxidant function. The aim of this investigation was to explore MTs as biomarkers for elevated levels of ROS in whole blood of type 2 diabetic (T2D) individuals. The level of ROS in diabetic, non-diabetic as well as individuals at risk of developing T2D was determined via the use of biochemical assays. Real-Time PCR was utilised to analyse the expression of MTs and the presence of MT proteins was analysed via the ELISA. In this study it was observed that diabetic individuals had elevated levels of ROS. However, no significant difference in the expression of MTs and the presence of MT proteins between the diabetic and non-diabetic individuals was observed. In vitro experimental conditions indicated that MT expression is induced by elevated levels of ROS. In pathological conditions the ROS-dependent induction of MT expression needs to be elucidated further. It therefore can be suggested that MTs can not yet be utilised as biomarkers for the detection of elevated levels of ROS in pathological conditions with ROS aetiology. This investigation also highlights the fact that blood is not an optimal medium in which this objective can be attained. / Thesis (Ph.D. (Biochemistry))--North-West University, Potchefstroom Campus, 2005.
186

Control of Uncoupling Protein-1 (UCP1) by Phosphorylation and the Metabolic Impact of Ectopic UCP1 Expression in Skeletal Muscle of Mice

Adjeitey, Cyril 07 June 2013 (has links)
UCP1 is a member of the mitochondrial transmembrane anion carrier protein superfamily and is required to mediate adaptive thermogenesis in brown adipose tissue (BAT). Once activated, UCP1 uncouples mitochondrial respiration from ATP synthesis, thereby wasting the protonmotive force formed across the mitochondrial inner membrane as heat. It is hypothesized that proton leaks through UCP1 could be a molecular target to combat certain forms of obesity. Although it is well established that UCP1 is regulated by allosteric mechanisms, alternative methods such as post-translational modification still remain to be explored. The aims of the present study were to confirm the phosphorylation of UCP1 and the physiological relevance of this modification. Using isoelectric focusing, we confirmed that UCP1 displayed acidic shifts consistent with phosphorylation in BAT mitochondria isolated from cold exposed versus warm acclimated mice. A mouse model that ectopically expressed UCP1 in skeletal muscle was used to explore the link between the mitochondrial redox status and UCP1 function. Our results show that the expression of UCP1 in skeletal muscle led to decreases in body and tissues weights. In contrast, glucose uptake into skeletal muscle, food intake and energy expenditure was increased with the expression of UCP1. Finally, proton leaks through UCP1 were determined to be increased in isolated mitochondria from transgenic versus wild-type mice. Taken together these results indicate a complex interplay between mitochondrial redox status, post-translational modification and UCP1 function. Elucidation of novel mechanisms regulating UCP1 offers alternatives strategies that can be explored in order to modulate BAT thermogenesis.
187

Exploring the role of 4-hydroxy-2-nonenal and mitochondrial dysfunction in diabetic neuropathy

Akude, Eli Kwaku 07 March 2011 (has links)
In diabetes hyperglycemia and lack of insulin signaling are key factors in the induction of diabetic sensory neuropathy. The combination of these factors in diabetes may enhance oxidative stress and trigger distal nerve damage in the peripheral nervous system. The link between elevated reactive oxygen species (ROS) levels and nerve degeneration is not clear. We tested the hypothesis that elevation of 4-hydroxy-2-nonenal (4-HNE) induced by oxidative stress in diabetes impairs mitochondrial activity and axonal regeneration in dorsal root ganglion (DRG) neurons. Also, we investigated the association between mitochondrial dysfunction and altered mitochondrial proteome in the axons of streptozotocin–induced diabetic rats. Research design and methods. Cultured adult rat DRG sensory neurons were treated exogenously with 4-HNE, and cell survival, axonal morphology, and level of axon outgrowth assessed. Western blot and fluorescence imaging were used to determine changes in the levels of adducts of 4-HNE and abnormalities in the mitochondria. Proteomic analysis using stable isotope labeling with amino acids in cell culture (SILAC) determined expression of proteins in the mitochondria. Results. 4-HNE impaired axonal regeneration, mitochondrial activity and induced aberrant axonal structures along the axons, which mimicked axon pathology observed in nerve isolated from diabetic rats and replicated aspects of neurodegeneration observed in human diabetic neuropathy. Proteins associated with mitochondrial dysfunction, oxidative phosphorylation and biosynthesis were down regulated in diabetic samples. The axons of diabetic neurons exhibited oxidative stress and depolarized mitochondria. CNTF and resveratrol reversed abnormalities in the mitochondrial membrane potential induced by diabetes and treatment of neurons with 4-HNE. CONCLUSIONS. Elevation of 4-HNE levels in diabetes was associated with impaired mitochondrial function and might be an important link between increased ROS levels and nerve degeneration in diabetic neuropathy. Abnormal mitochondrial function correlated with a down-regulation of mitochondrial proteins, with components of the respiratory chain targeted in lumbar DRG in diabetes. The reduced activity of the respiratory chain was associated with diminished superoxide generation within the mitochondrial matrix and did not contribute to oxidative stress in axons of diabetic neurons.
188

The Role of the Carotenoid Lycopene as an Antioxidant to Decrease Osteoporosis Risk in Women: Clinical and in vitro Studies

Mackinnon, Erin Shea 31 August 2010 (has links)
Lycopene is a potent carotenoid antioxidant shown to decrease the risk of chronic diseases associated with oxidative stress and has recently begun to be studied in relation to osteoporosis. However, studies specifically associating intervention with lycopene and a decreased risk for osteoporosis have not yet been conducted, and the mechanisms by which lycopene affects bone have yet to be elucidated. The purpose of this thesis was to explore the hypotheses that supplementation with lycopene would increase antioxidant capacity while decreasing oxidative stress parameters; subsequently decreasing bone turnover markers, and thus the risk of osteoporosis in postmenopausal women. Specifically, experiments were designed to determine whether lycopene acts in its antioxidant capacity to improve bone health, and to delineate the mechanisms of these effects. These hypotheses were investigated through a cross-sectional study, a randomized controlled clinical study, and in vitro studies on human osteoblast cells. The results presented in this thesis demonstrate that intervention with the potent antioxidant lycopene significantly increased concentrations of the 5-cis isomer and resulted in significantly decreased oxidative stress parameters in postmenopausal women. This decrease in oxidative stress parameters resulted in significantly decreased concentrations of the bone resorption marker crosslinked N-telopeptides of type I collagen (NTx). The typical diet of participants included a relatively low intake of lycopene, and the corresponding serum lycopene concentrations were not as effective in decreasing biomarkers of oxidative stress and bone resorption as those obtained from supplementation with lycopene to increase 5-cis serum lycopene. Studies on the paraoxonase enzyme suggest that lycopene is most effective in quenching oxidative stress to decrease bone turnover markers when the internal antioxidant defenses are insufficient or decremented. Mechanisms demonstrated by the in vitro findings suggest that cis lycopene is capable of both preventing and repairing the damaging effects of oxidative stress in osteoblasts. Overall, this thesis provides evidence that lycopene acts through its antioxidant capacity to decrease oxidative stress parameters and bone turnover markers, and may, therefore, reduce the risk for osteoporosis. Based on these findings, the consumption of lycopene by women to improve overall bone health should be considered.
189

New mechanisms modulating S100A8 gene expression

Endoh, Yasumi, Medical Sciences, Faculty of Medicine, UNSW January 2008 (has links)
S100A8 is a highly-expressed calcium-binding protein in neutrophils and activated macrophages, and has proposed roles in myeloid cell differentiation and host defense. Functions of S100A8 are not fully understood, partly because of difficulties in generating S100A8 knockout mice. Attempts to silence S100A8 gene expression in activated macrophages and fibroblasts using RNA interference (RNAi) technology were unsuccessful. Despite establishing validated small interfering RNA (siRNA) systems, enzymaticallysynthesized siRNA targeted to S100A8 suppressed mRNA levels by only 40% in fibroblasts activated with FGF-2+heparin, whereas chemically-synthesized siRNAs suppressed S100A8 driven by an S100A8-expression vector by ~75% in fibroblasts. Suppression of the gene in activated macrophages/fibroblasts was low, and some enzymatically-synthesized siRNAs to S100A8, and unrelated siRNA to GAPDH, induced/enhanced S100A8 expression in macrophages. This indicated that S100A8 may be upregulated by type-1 interferon (IFN). IFN-β enhanced expression, but did not directly induce S100A8. Poly (I:C), a synthetic dsRNA, directly induced S100A8 through IL-10 and IFN-dependent pathways. Induction by dsRNA was dependent on RNA-dependent protein kinase (PKR), but not cyclooxygenase-2, suggesting divergent pathways in LPS- and dsRNA-induced responses. New mechanisms of S100A8 gene regulation are presented, that suggest functions in anti-viral defense. S100A8 expression was confirmed in lungs from influenza virus-infected mice and from a patient with severe acute respiratory syndrome (SARS). Multiple pathways via mitochondria mediated S100A8 induction in LPS-activated macrophages; Generation of reactive oxygen species via the mitochondrial electron transport chain and de novo synthesis of ATP may be involved. This pathway also regulated IL-10 production, possibly via PKR. Extracellular ATP and its metabolites enhanced S100A8 induction. Results support involvement of cell stress, such as transfection, in S100A8 expression. A breast tumor cell line (MCF-7) in which the S100A8 gene was silenced, was established using micro RNA technology; S100A8 induction by oncostatin M was reduced by >90% in stably-transfected cells. This did not alter MCF-7 growth. The new approach to investigate the role of S100A8 in a human tumor cell line may assist in exploring its functions and lead to new studies concerning its role in cancer.
190

Effects of Water Deficit on Pollen Development in Rice

NGUYEN, Ngoc Giao January 2008 (has links)
Doctor of Philosophy / Rice (Oryza sativa L.) is very susceptible to water deficit at any time during its life cycle as a semi-aquatic cereal crop. However, the consequential damage is particularly severe if water deficit occurs during reproductive phases. The conspicuous injury often observed in rice plants exposed to water stress during meiosis of the pollen mother cell is the reduction of grain set, which is attributed to the decline of male fertility. In spite of much research on drought-induced male sterility in rice, the underlying mechanisms of the problem are poorly understood. This project was therefore conducted to investigate the molecular mechanisms of water deficit-induced pollen sterility in rice. In this study three consecutive days of water deficit treatment at -0.5 MPa osmotic potential during anther development effectively reduced the leaf water potential (leaf) and the number of viable pollen which later led to a decrease in grain set. Moreover, this thesis demonstrates that the immediate deleterious effects of water deficit to plant fertility could be estimated using a young microspore viability index, which showed a strong correlation with mature viable pollen and grain set. The present work has also illustrated that oxidative stress appears to be a plausible cause for the decline of male fertility and grain set. Water deficit has induced the excessive production of reactive oxygen species (ROS) above the redox balance, which in turn caused detrimental effects to cellular DNA and might result in programmed cell death (PCD) in the anthers. Moreover, ROS accumulation effectively influenced ATP synthesis leading to a decrease in the level of ATP in the anthers. Excessive ROS accumulation after drought could be the consequence of insufficient activity of the antioxidant system, which has been illustrated by qRT-PCR expression analysis of major antioxidant genes. Down-regulation of those genes would increase the incidence of oxidative damage. In contrast, stable or up-regulated expression of these genes resulted in less oxidative damage. Detailed investigations of sugar metabolism in anthers has provided supplemental data to develop a model of sugar unloading and transport within anther using in situ hybridisation to mRNA techniques. Analysis of sugar transportation within the cellular compartments of anther has unveiled the role of sugar metabolism on pollen sterility in rice. qRT-PCR assays of genes associated with the sugar metabolic pathway has demonstrated that the supply of both sucrose and hexoses from the anther walls to the locules was not restricted after water deficit stress. The results indicate that water deficit might not cause sugar starvation for developing microspores as previously thought, nor inhibit the initial steps of sugar utilisation such as glycolysis. This thesis has suggested new ideas regarding the role of rising sugar levels to cope with oxidative stress in anthers. Sugar accumulation might have provided protection against oxidant damage by strengthening the antioxidant system. However, the interplay between sugar and oxidative stress is not straightforward and needs to be further characterised. In-depth investigations on the interaction between sugar signalling and oxidative stress responses may help indentify the role of sugars in protecting anthers under water deficit. Although many studies on drought and chilling stresses in rice anthers have been performed, the causal mechanism of male sterility still remains to be elucidated. Findings presented in this thesis may contribute to understanding molecular mechanisms of male sterility in rice as a response to drought stress. A more detailed investigation of mitochondrial respiration in rice anthers is required to further examine this problem. Finally, this thesis suggests that signalling molecules such as 14-3-3 proteins and abscisic acid (ABA) might act upstream of ROS production and antioxidant defence in plants. Further work on these molecules might therefore further illustrate how they influence plant fertility under water shortage conditions.

Page generated in 0.1219 seconds