• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 12
  • 11
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reaktiwiteit van enkele gekoördineerde swaelverbindings

01 September 2015 (has links)
M.Sc. / Please refer to full text to view abstract
2

The experimental determination of temperature and concentration profiles for a fixed-bed catalytic reactor

Smith, Edward William, 1942- January 1969 (has links)
No description available.
3

A study of the surface structure and reactivity of metal oxides in solution

Simpson, Darren John January 2003 (has links)
Thesis (PhDAppliedScience)--University of South Australia, 2003.
4

A study of the surface structure and reactivity of metal oxides in solution

Simpson, Darren John January 2003 (has links)
Thesis (PhDAppliedScience)--University of South Australia, 2003.
5

Isomerization, reactivity, and structural study of a thioperoxide-bridged dimolybdenum(V) dimer

Tuong, Chi Minh, January 2004 (has links) (PDF)
Thesis (M.S.)--University of Louisville, 2004. / Department of Chemistry. Vita. "May 2004." Includes bibliographical references (leaves 55-59).
6

Tunability and reactivity of selected solid state materials

Jones, Barry Richard. January 2006 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Chemistry Department, 2006. / Includes bibliographical references.
7

Intra- and intermolecular reactivity of organic diacyl systems

Symes, Jillian Ellis January 1988 (has links)
The mechanism or a thermal amino group transfer-fragmentation reaction yielding carboxyamides from mixed phosphoric-carboxylic anhydrides (RO(R¹R²N)P(O)OC(O)R³; R = R¹ = alkyl; R² = H, alkyl, aryl; R³ = alkyl, aryl) was elucidated from structure reactivity studies using a model system, R = R¹ = R² = Me, R³ = Ph. Kinetic data was obtained using ¹H nmr spectroscopy; MNDO molecular orbital and molecular mechanics calculations, and the crystal structure or N-methyl-2-benzoyloxy-2-oxo-1, 3, 2-oxazaphosphorinane (Pna2₁; a = 22.229(6)Å, b = 7.597(2)Å, c = 7.210(2)Å; v = 1217.6(6)ų. Final R = 3. 08% for 1037 reflections with I (rel )> 2αI (rel) and 15 7 parameters) were userul in providing additional in formation about the reaction mechanism .
8

Novel Lewis Acid-promoted cyclization reactions and synthesis of triptolide analogs

Gao, Qiang, 高強 January 2003 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
9

Organic clathrates : structure and reactivity

Nohako, Kanyisa L January 2009 (has links)
Thesis (MTech (Chemistry))--Cape Peninsula University of Technology, 2009 / The host compound 9-(4-methoxyphenyl)-9H-xanthen-9-01 (AI) forms inclusion compounds with the solid guests l -naphthylamine (NAPH), 8-hydroxyquinoline (HQ). acridine (ACRI), 1,4 - diazabicyclo[2.2.2]octane (DABCO) and a liquid guest benzaldehyde (BENZAL). All four structures AI·YzNAPH, AI· Y,HQ AI·ACRI and AI ·Y,DABCO were successfully solved in the triclinic space group P I . The structure of AI·Y,BENZAL was successfully solved in the monocl inic space group P2dn . Similar packin g motifs arise for the NAPH and HQ inclusion compounds where the main interaction is of the fonm (Host)-OH····O-(Host). Both the DABCO and the ACRI guests hydrogen bond to the host molecule. The host: guest ratios for A I·ACRI. AI· Y,NAPH. A I· Y,DABCO and A I· YzHQ were found using nuclear magnetic resonance (NMR) spectroscopy. The host:guest ratio for AI·YzBENZAL was found using thenmogravimetric analysis. Enthalpy changes of the inclusion compounds were monitored using differential scanning calorimetry (DSC). Kinetics of desolvation for AI·Y,BENZAL were conducted using a non - isothenmal method where we have obtained an activation energy range of 74 k J morl - 86 k J mor' . The solid - solid reaction kinetics for A I·Y,NAPH, A I· Y,HQ, AI·ACRI and AI ·Y,DABCO were determined at room temperature using powder X-ray diffraction (PXRD).
10

Synthesis and reactivity study of rhodium porphyrin amido complexes.

January 2010 (has links)
Au, Ching Chi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 83-89). / Abstracts in English and Chinese. / Table of contents --- p.i / Acknowledgements --- p.iii / Abbreviations --- p.iv / Abstract --- p.v / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Importance of Transition Metal Amido Complexes --- p.1 / Chapter 1.1.1 --- Transition Metal Amido Complexes as Catalysts --- p.1 / Chapter 1.1.2 --- Transition Metal Amido Complexes as Reaction Intermediates --- p.2 / Chapter 1.2 --- Bonding Nature of Late Transition Metal Amido Complexes --- p.4 / Chapter 1.2.1 --- Theory of π Conflict --- p.5 / Chapter 1.2.2 --- E-C Approach --- p.7 / Chapter 1.3 --- Synthesis of Transition Metal Amido Complexes --- p.8 / Chapter 1.3.1 --- Transmetallation --- p.9 / Chapter 1.3.2 --- Deprotonation of Coordinated Amine --- p.10 / Chapter 1.3.3 --- Hydride Addition across Organic Azide --- p.11 / Chapter 1.4 --- Reactivity of Transition Metal Amido Complexes --- p.12 / Chapter 1.4.1 --- β-Elimination --- p.12 / Chapter 1.4.2 --- Insertion --- p.13 / Chapter 1.4.3 --- Reductive Elimination --- p.16 / Chapter 1.4.4 --- Bond Activation --- p.17 / Chapter 1.5 --- Structural Features of Rhodium Porphyrin Complexes --- p.18 / Chapter 1.6 --- Examples of Metalloporphyrin Complexes Containing Nitrogen Ligands --- p.19 / Chapter 1.7 --- Bond Activation by Rhodium Porphyrins --- p.21 / Chapter 1.8 --- Objectives of the Work --- p.23 / Chapter Chapter 2 --- Synthesis and Reactivity Studies of Rhodium Porphyrin Amido Complexes --- p.24 / Chapter 2.1 --- Synthesis of Porphyrin and Rhodium Porphyrin Chloride --- p.24 / Chapter 2.2 --- Synthesis of Rhodium Porphyrin Amido Complexes from Rhodium Porphyrin Chloride --- p.24 / Chapter 2.2.1 --- By Transmetallation with Lithium Amide --- p.25 / Chapter 2.2.2 --- By Base-promoted Ligand Substitution Using Rh(ttp)Cl --- p.27 / Chapter 2.2.2.1 --- Optimization of Reaction Conditions --- p.27 / Chapter 2.2.2.2 --- Substrate Scope --- p.31 / Chapter 2.3 --- X-ray Structure of Rh(ttp)NHS02Ph --- p.33 / Chapter 2.4 --- Bond Activation Chemistry of Rh(ttp)NHS02Ph --- p.36 / Chapter 2.5 --- Conclusion --- p.37 / Chapter Chapter 3 --- Reactivity Studies of Rh(ttp)NHS02Ph --- p.39 / Chapter 3.1 --- Thermal Reaction of Rh(ttp)NHS02Ph in Benzene-d6 --- p.39 / Chapter 3.2 --- Mechanistic Studies of the Conversion from Rh(ttp)NHS02Ph to [Rh(ttp)]2 --- p.41 / Chapter 3.2.1 --- Mechansim A (Hydrolysis of Rh(ttp)NHS02Ph) --- p.42 / Chapter 3.2.2 --- Mechanism B (Rh-N Bond Homolysis - (PhS02NH)2 Hydrolysis) --- p.44 / Chapter 3.2.3 --- Mechanism C (Rh-N Bond Homolysis - (PhS02NH)2 Nitrogen-Hydrogen Bond Activation) --- p.45 / Chapter 3.3 --- Discussions --- p.52 / Chapter 3.3.1 --- Estimation of Rhodium-Nitrogen Bond Dissociation Energy --- p.52 / Chapter 3.3.2 --- Effect of Excess PhS02NH2 in the Synthesis of Rh(ttp)NHS02Ph --- p.58 / Chapter 3.4 --- Conclusion --- p.58 / Chapter Chapter 4 --- Experimental Section --- p.60 / References --- p.83 / Appendix I X ray data --- p.90 / Appendix I List of Spectra --- p.96

Page generated in 0.195 seconds