• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An adaptive Runge-Kutta-Fehlberg method for time-dependent discrete ordinate transport

Edgar, Christopher A. 21 September 2015 (has links)
This dissertation focuses on the development and implementation of a new method to solve the time-dependent form of the linear Boltzmann transport equation for reactor transients. This new method allows for a stable solution to the fully explicit form of the transport equation with delayed neutrons by employing an error-controlled, adaptive Runge-Kutta-Fehlberg (RKF) method to differentiate the time domain. Allowing for the time step size to vary adaptively and as needed to resolve the time-dependent behavior of the angular flux and neutron precursor concentrations. The RKF expansion of the time domain occurs at each point and is coupled with a Source Iteration to resolve the spatial behavior of the angular flux at the specified point in time. The decoupling of the space and time domains requires the application of a quasi-static iteration between solving the time domain using adaptive RKF with error control and resolving the space domain with a Source Iteration sweep. The research culminated with the development of the 1-D Adaptive Runge-Kutta Time-Dependent Transport code (ARKTRAN-TD), which successfully implemented the new method and applied it to a suite of reactor transient benchmarks.

Page generated in 0.0686 seconds