• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An experimental study of steady state high heat flux removal using spray cooling

Fillius, James B. 12 1900 (has links)
Approved for public release; distribution in unlimited. / Spray cooling is a promising means of dissipating large steady state heat fluxes in high density power and electronic systems, such as thermophotovoltaic systems. The present study reports on the effectiveness of spray cooling in removing heat fluxes as high as 220 W/cm2. An experiment was designed to determine how the parameters of spray volumetric flow rate and droplet size influence the heat removal capacity of such a system. A series of commercially available nozzles were used to generate full cone water spray patterns encompassing a range of volumetric flow rates (3.79 to 42.32 L/h) and droplet Sauter mean diameters (17.4 to 35.5 micrometers). The non-flooded regime of spray cooling was studied, in which liquid spreading on the heater surface following droplet impact is the key phenomenon that determines the heat transfer rate. The experimental data established a direct proportionality of the heat flux with spray flow rate, and an inverse dependence on the droplet diameter. A correlation of the data was developed to predict heat flux as a function of the studied parameters over the range of values tested in this. / Lieutenant, United States Navy
2

Adaptive Envelope Protection Methods for Aircraft

Unnikrishnan, Suraj 19 May 2006 (has links)
Carefree handling refers to the ability of a pilot to operate an aircraft without the need to continuously monitor aircraft operating limits. At the heart of all carefree handling or maneuvering systems, also referred to as envelope protection systems, are algorithms and methods for predicting future limit violations. Recently, envelope protection methods that have gained more acceptance, translate limit proximity information to its equivalent in the control channel. Envelope protection algorithms either use very small prediction horizon or are static methods with no capability to adapt to changes in system configurations. Adaptive approaches maximizing prediction horizon such as dynamic trim, are only applicable to steady-state-response critical limit parameters. In this thesis, a new adaptive envelope protection method is developed that is applicable to steady-state and transient response critical limit parameters. The approach is based upon devising the most aggressive optimal control profile to the limit boundary and using it to compute control limits. Pilot-in-the-loop evaluations of the proposed approach are conducted at the Georgia Tech Carefree Maneuver lab for transient longitudinal hub moment limit protection. Carefree maneuvering is the dual of carefree handling in the realm of autonomous Uninhabited Aerial Vehicles (UAVs). Designing a flight control system to fully and effectively utilize the operational flight envelope is very difficult. With the increasing role and demands for extreme maneuverability there is a need for developing envelope protection methods for autonomous UAVs. In this thesis, a full-authority automatic envelope protection method is proposed for limit protection in UAVs. The approach uses adaptive estimate of limit parameter dynamics and finite-time horizon predictions to detect impending limit boundary violations. Limit violations are prevented by treating the limit boundary as an obstacle and by correcting nominal control/command inputs to track a limit parameter safe-response profile near the limit boundary. The method is evaluated using software-in-the-loop and flight evaluations on the Georgia Tech unmanned rotorcraft platform- GTMax. The thesis also develops and evaluates an extension for calculating control margins based on restricting limit parameter response aggressiveness near the limit boundary.

Page generated in 0.0451 seconds