• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Single molecule study of RecA recombinase enzyme activity

Mah, Wayne. January 1900 (has links)
Thesis (M.Sc.). / Written for the Dept. of Chemistry. Title from title page of PDF (viewed 2008/05/14). Includes bibliographical references.
2

Mechanism of homologous recombination : from crystal structures of RecA-single stranded DNA and RecA-double stranded DNA filaments /

Chen, Zhucheng. January 2009 (has links)
Thesis (Ph. D.)--Cornell University, January, 2009. / Vita. Includes bibliographical references (leaves 121-134).
3

Homologous Recombinational DNA Repair: from Prokaryotes to Eukaryotes: a Dissertation

Forget, Anthony L. 17 April 2004 (has links)
The error free repair of DNA double strand breaks through the homologous recombinational repair pathway is essential for organisms of all types to sustain life. A detailed structural and mechanistic understanding of this pathway has been the target of intense study since the identification of bacterial recA, the gene whose product is responsible for the catalysis of DNA strand exchange, in 1965. The work presented here began with defining residues that are important for the assembly and stability of the RecA filament, and progressed to the identification of residues critical for the transfer of ATP-mediated allosteric information between subunits in the protein's helical filament structure. My work then evolved to investigate similar mechanistic details concerning the role of ATP in the human RecA homolog, Rad51. Results from non-conservative mutagenesis studies of the N-terminal region of one subunit and the corresponding interacting surface on the neighboring subunit within the RecA protein, led to the identification of residues critical for the formation of the inactive RecA filament but not the active nucleoprotein filament. Through the use of specifically engineered cysteine substitutions we observed an ATP-induced change in the efficiency of cross subunit disulfide bond formation and concluded that the position of residues in this region as defined by the current crystal structure may not accurately reflect the active form of the protein. These ATP induced changes in positioning led to the further investigation of the allosteric mechanism resulting in the identification of residue Phe217 as the key mediator for ATP-induced information transfer from one subunit to the next. In transitioning to investigate homologous mechanisms in the human pathway I designed a system whereby we can now analyze mutant human proteins in human cells. This was accomplished through the use of RNA interference, fluorescent transgenes, confocal microscopy and measurements of DNA repair. In the process of establishing the system, I made the first reported observation of the cellular localization of one of the Rad51 paralogs, Xrcc3, before and after DNA damage. In addition we found that a damage induced reorganization of the protein does not require the presence of Rad51 and the localization to DNA breaks occurs within 10 minutes. In efforts to characterize the role of ATP in human Rad51 mediated homologous repair of double strand breaks we analyzed two mutations in Rad51 specifically affecting ATP hydrolysis, K133A and K133R. Data presented here suggests that, in the case of human cells, ATP hydrolysis and therefore binding, by Rad51 is essential for successful repair of induced damage.
4

Allosteric Regulation of Recombination Enzymes <em>E. coli</em> RecA and Human Rad51: A Dissertation

De Zutter, Julie Kelley 07 August 2000 (has links)
ATP plays a critical role in the regulation of many enzyme processes. In this work, I have focused on the ATP mediated regulation of the recombination processes catalyzed by the E. coliRecA and the human Rad51 proteins. The RecA protein is a multifunctional enzyme, which plays a central role in the processes of recombinational DNA repair, homologous genetic recombination and in the activation of the cellular SOS response to DNA damage. Each of these functions requires a common activating step, which is the formation of a RecA-ATP-ssDNA nucleoprotein filament. The binding of ATP results in the induction of a cooperative, high affinity ssDNA binding state within RecA (Menetski & Kowalczykowski, 1985b; Silver & Fersht, 1982). Data presented here identifies Gln194 as the NTP binding site "γ-phosphate sensor", in that mutations introduced at this residue disrupt all ATP induced RecA activities, while basal enzyme function is maintained. Additionally, we have dissected the parameters contributing to cooperative nucleoprotein filament assembly in the presence of cofactor. We show that the dramatic increase in the affinity of RecA for ssDNA in the presence of ATP is a result of a significant increase in the cooperative nature of filament assembly and not an increase in the intrinsic affinity of a RecA monomer for ssDNA. Previous work using both mutagenesis and engineered disulfides to study the subunit interface of the RecA protein has demonstrated the importance of Phe217 for the maintenance of both the structural and functional properties of the protein (Skiba & Knight, 1994; Logan et al., 1997; Skiba et al., 1999). A Phe217Tyr mutation results in a striking increase in cooperative filament assembly. In this work, we identify Phe217 as a key residue within the subunit interface and clearly show that Phe217 is required for the transmission of ATP mediated allosteric information throughout the RecA nucleoprotein filament. The human Rad51 (hRad51) protein, like its bacterial homolog RecA, catalyzes genetic recombination between homologous single and double stranded DNA substrates. This suggests that the overall process of homologous recombination may be conserved from bacteria to humans. Using IAsys biosensor technology, we examined the effect of ATP on the binding of hRad51 to ssDNA. Unlike RecA, we show that hRad51 binds cooperatively and with high affinity to ssDNA both in the presence and absence of nucleotide cofactor. These results show that ATP plays a fundamentally different role in hRad51 vs.RecA mediated processes. In summary, through the work presented in this dissertation, we have defined the critical molecular determinants for ATP mediated allosteric regulation within RecA. Furthermore, we have shown that ATP is not utilized by Rad51 in the same manner as shown for RecA, clearly defining a profound mechanistic difference between the two proteins. Future studies will define the requirement for ATP in hRad51 mediated processes.

Page generated in 0.0732 seconds