• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Signal processing within and between bacterial chemoreceptors

Lai, Runzhi 15 May 2009 (has links)
The key control step in E. coli chemotaxis is regulation of CheA kinase activity by a set of four transmembrane chemoreceptors. The receptor dimers can form trimeric complexes (trimers of dimers), and these trimers can be joined by a bridge thought to consist of a CheW monomer, a CheA dimer, and a second CheW monomer. It has been proposed that trimers of receptor dimers may be joined by CheW-CheA dimer-CheW links to form an extended hexagonal lattice that may be the structural basis of the chemoreceptor patches seen in E. coli. The receptor/CheA/CheW ternary complex is a membrane-spanning allosteric enzyme whose activity is regulated by protein interactions. The study presented in this dissertation investigated intermolecular and intramolecular interactions that affect the chemotactic signal processing. I have examined functional interactions between the serine receptor Tsr and the aspartate receptor Tar using a receptor coupled in vitro phosphorylation assay. The results reveal the emergent properties of mixed receptor populations and emphasize their importance in the integrated signal processing that underlies bacterial chemotaxis. A mutational analysis of the extreme C-terminus (last fifty residues) of Tar is also presented. The results implicate the receptor C-terminus in maintenance of baseline receptor activity and in attractant-induced transmembrane signaling. They also suggest how adaptive methylation might counteract the effects of attractant binding.

Page generated in 0.0652 seconds