• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 6
  • 6
  • 5
  • 1
  • Tagged with
  • 71
  • 71
  • 71
  • 21
  • 15
  • 12
  • 11
  • 11
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The MET Receptor Tyrosine Kinase Is a Potential Therapeutic Target in Combination with Radiation in Head and Neck Squamous Cell Carcinoma

Wu, Ronald 23 July 2012 (has links)
Radioresistance is a major cause of treatment failure and relapse in head and neck squamous cell carcinoma (HNSCC). Novel molecular targets need to be identified to increase cure rates and radiosensitivity in HNSCC. The MET receptor tyrosine kinase is highly dysregulated in cancer and plays a role in tumourigenesis, chemoresistance, and radioresistance. However, the role of MET in HNSCC radioresistance has not yet been investigated and may potentially be a radiosensitizing target. We discovered MET expression and intact ligand-induced signalling in HNSCC cell lines. Small molecule MET kinase inhibitors inhibited ligand-induced MET activation and downstream signalling. These inhibitors decreased HNSCC cell proliferation and clonogenic survival. Similarly, short-interfering RNAs targeting MET also decreased cell proliferation. The combination of radiation with the MET kinase inhibitors decreased clonogenic survival in an additive manner. Cell cycle analyses demonstrated that MET inhibitors alone or in combination with radiation induced small increases in sub-G1 cell populations.
22

The RET receptor tyrosine kinase: mechanism, signaling and therapeutics

Gujral, Taranjit Singh 07 June 2010 (has links)
The RET receptor tyrosine kinase has essential roles in cell survival, differentiation, and proliferation. Oncogenic activation of RET causes the cancer syndrome multiple endocrine neoplasia type 2 (MEN 2), and is a frequent event in sporadic thyroid carcinomas. Multiple endocrine neoplasia 2B (MEN 2B), a subtype of MEN 2, is caused primarily by a methionine to threonine substitution of residue 918 in the kinase domain of the RET receptor (2B-RET), however the molecular mechanisms that lead to the disease phenotype are unclear. In this study, we show that the M918T mutation causes a 10 fold increase in ATP binding affinity, and leads to a more stable receptor-ATP complex, relative to the wildtype receptor. We also show that 2B-RET can dimerize and become autophosphorylated in the absence of ligand. Our data suggest that multiple distinct but complementary molecular mechanisms underlie the MEN 2B phenotype and provide potential targets for effective therapeutics for this disease. In the second part of the study, we identified a novel β-catenin-RET kinase signaling pathway which is a critical contributor to the development and metastasis of human thyroid carcinoma. We show that RET binds to, and tyrosine phosphorylates, β-catenin and demonstrate that the interaction between RET and β-catenin can be direct and independent of cytoplasmic kinases, such as SRC. As a result of RET-mediated tyrosine phosphorylation, β-catenin escapes cytosolic downregulation by the APC/Axin/GSK3 complex and accumulates in the nucleus, where it can stimulate β-catenin-specific transcriptional programs in a RET-dependent fashion. We show that downregulation of β-catenin activity decreases RET-mediated cell proliferation, colony formation, and tumour growth in nude mice. Finally, we used a structure guided approach to identify and characterize a novel, non-ATP competitive, RET inhibitor; SW-01. We show that SW-01 provides significant RET inhibition in an in vitro kinase assay using purified RET. Moreover, RET phosphorylation is blocked, or dramatically reduced, in vivo in cells overexpressing active RET. We observe a significant decrease in cell proliferation and colony formation in RET-expressing cells in the presence of SW-01. Together, our data suggest that SW-01 has potential as a novel RET kinase inhibitor with clinical utility. / Thesis (Ph.D, Pathology & Molecular Medicine) -- Queen's University, 2008-09-15 16:20:59.976
23

Identification of Genes Involved in the C. elegans VAB-1 Eph Receptor Tyrosine Kinase Signaling Pathway

MOHAMED, AHMED 29 July 2011 (has links)
The generation of a functional nervous system requires that neuronal cells and axons navigate precisely to their appropriate targets. The Eph Receptor Tyrosine Kinases (RTKs) and their ephrin ligands have emerged as one of the important guidance cues for neuronal and axon navigation. However, the molecular mechanisms of how Eph RTKs regulate these processes are still incomplete. The purpose of this work was to contribute to the understanding of how Eph receptors regulate axon guidance by identifying and characterizing components of the Caenorhabditis elegans Eph RTK (VAB-1) signaling pathway. To achieve this objective I utilized a hyper active form of the VAB-1 Eph RTK (MYR-VAB-1) that caused penetrant axon guidance defects in the PLM mechanosensory neurons, and screened for suppressors of the MYR-VAB-1 phenotype. Through a candidate gene approach, I identified the adaptor NCK-1 as a downstream effector of VAB-1. Molecular and genetic analysis revealed that the nck-1 gene encodes for two isoforms (NCK-1A and NCK-1B) that share similar expression patterns in parts of the nervous system, but also have independent expression patterns in other tissues. Genetic rescue experiments showed that both NCK-1 isoforms can function in axon guidance, but each isoform also has specific functions. In vitro binding assays showed that NCK-1 binds to VAB-1 in a kinase dependent manner. In addition to NCK-1, WSP-1/N-WASP was also identified as an effector of VAB-1 signaling. Phenotypic analysis showed that nck-1 and wsp-1 mutants had PLM axon over extension defects similar to vab-1 animals. Furthermore, VAB-1, NCK-1 and WSP-1 formed a complex in vitro. Intriguingly, protein binding assays showed that NCK-1 can also bind to the actin regulator UNC-34/Ena, but genetic experiments suggest that unc-34 is an inhibitor of nck-1 function. Through various genetic and biochemical experiments, I provide evidence that VAB-1 can disrupt the NCK-1/UNC-34 complex, and negatively regulate UNC-34. Taken together, my work provides a model of how VAB-1 RTK signaling can inhibit axon extension. I propose that activated VAB-1 can prevent axon extension by inhibiting growth cone filopodia formation. This is accomplished by inhibiting UNC-34/Ena activity, and simultaneously activating Arp2/3 through a VAB-1/NCK-1/WSP-1 complex. / Thesis (Ph.D, Biology) -- Queen's University, 2011-07-28 16:20:31.957
24

Regulation of FGF Receptor 1 by Nedd4-1

Persaud, Avinash 19 June 2014 (has links)
The ubiquitin system plays a pivotal role in regulating protein degradation, endocytosis and numerous other cellular functions. E3 ubiquitin ligases, which mediate the final step in the ubiquitylation reaction cascade, are responsible for substrate recognition and ubiquitin attachment to them, underscoring the importance of identifying their substrates. Nedd4 family members are E3 ubiquitin ligases comprised of a C2-WW-HECT domain architecture. This thesis was aimed at first globally delineating the substrate specificity of the closely related Nedd4 family members in humans, hNedd4-1 (Nedd4) and hNedd4-2 (Nedd4L), and second, to follow up on one of the novel hits identified, the FGFR1, and study in detail how it is regulated by its E3 ligase hNedd4-1. To globally identify substrates for Nedd4 proteins, a high throughput proteomic screening technology using protein microarrays was employed. Despite the obvious homology in their domain architecture, the results presented here suggest that these Nedd4 family members may function non-redundantly, since they demonstrate a selective preference towards substrate ubiquitylation. Our focus on FGFR1, a substrate identified for hNedd4-1, has revealed an important functional role for this ubiquitin ligase in promoting FGFR1 endocytosis and downregulation of its signaling activity. The evidence presented indicates that this interaction has important consequences for developmental processes that are dependent on FGF signaling: human neural stem cell differentiation and zebrafish embryonic patterning and brain development. We demonstrate that the WW3 domain of Nedd4-1 recognizes a novel, non-canonical binding surface (peptide2) within the juxtamembrane region of FGFR1, and we are currently in the process of solving the 3 dimensional structure of the hNedd4-1 WW3: FGFR1 peptide2 complex using X-ray crystallography. Furthermore, in characterizing the interaction between hNedd4-1 and FGFR1, we have provided evidence for a novel mechanism for regulating the catalytic activity of hNedd4-1 by FGFR1 activation. This involves the formation of hNedd4-1 dimers upon removal of the autoinhibitory C2 domain from the HECT domain. Dimerized hNedd4-1, in turn, exhibits enhanced interactions with FGFR1 and enhanced receptor ubiquitylation. From these data, we proposed a negative feedback inhibitory model for FGFR1 downregulation, whereby activated receptor enhances the activation of its suppressor, hNedd4-1, to ensure timely termination of receptor signaling.
25

Regulation of FGF Receptor 1 by Nedd4-1

Persaud, Avinash 19 June 2014 (has links)
The ubiquitin system plays a pivotal role in regulating protein degradation, endocytosis and numerous other cellular functions. E3 ubiquitin ligases, which mediate the final step in the ubiquitylation reaction cascade, are responsible for substrate recognition and ubiquitin attachment to them, underscoring the importance of identifying their substrates. Nedd4 family members are E3 ubiquitin ligases comprised of a C2-WW-HECT domain architecture. This thesis was aimed at first globally delineating the substrate specificity of the closely related Nedd4 family members in humans, hNedd4-1 (Nedd4) and hNedd4-2 (Nedd4L), and second, to follow up on one of the novel hits identified, the FGFR1, and study in detail how it is regulated by its E3 ligase hNedd4-1. To globally identify substrates for Nedd4 proteins, a high throughput proteomic screening technology using protein microarrays was employed. Despite the obvious homology in their domain architecture, the results presented here suggest that these Nedd4 family members may function non-redundantly, since they demonstrate a selective preference towards substrate ubiquitylation. Our focus on FGFR1, a substrate identified for hNedd4-1, has revealed an important functional role for this ubiquitin ligase in promoting FGFR1 endocytosis and downregulation of its signaling activity. The evidence presented indicates that this interaction has important consequences for developmental processes that are dependent on FGF signaling: human neural stem cell differentiation and zebrafish embryonic patterning and brain development. We demonstrate that the WW3 domain of Nedd4-1 recognizes a novel, non-canonical binding surface (peptide2) within the juxtamembrane region of FGFR1, and we are currently in the process of solving the 3 dimensional structure of the hNedd4-1 WW3: FGFR1 peptide2 complex using X-ray crystallography. Furthermore, in characterizing the interaction between hNedd4-1 and FGFR1, we have provided evidence for a novel mechanism for regulating the catalytic activity of hNedd4-1 by FGFR1 activation. This involves the formation of hNedd4-1 dimers upon removal of the autoinhibitory C2 domain from the HECT domain. Dimerized hNedd4-1, in turn, exhibits enhanced interactions with FGFR1 and enhanced receptor ubiquitylation. From these data, we proposed a negative feedback inhibitory model for FGFR1 downregulation, whereby activated receptor enhances the activation of its suppressor, hNedd4-1, to ensure timely termination of receptor signaling.
26

The Role of Signaling Pathway Integration in Neurogenesis

Ringuette, Randy January 2016 (has links)
Proper central nervous system development is critical for survival and depends on complex intracellular and extracellular signaling to regulate neural progenitor cell growth and differentiation; however, the mechanisms that mediate molecular crosstalk between pathways during neurogenesis are not fully understood. Here, we explored the integration of the Hedgehog (Hh) signaling pathway with the two critical developmental pathways, Receptor Tyrosine Kinase (RTK) and Notch signaling, in the growth and maintenance of neural progenitors in the developing neuroretina. We found combined and sustained RTK and Hh signaling was sufficient to establish long-term retinal progenitor cell (RPC) cultures and these cells maintained neurogenic and gliogenic, but not retinogenic, competence in vitro and in vivo. In addition, we identified crosstalk between Notch and Hh signaling, where Notch is required for Hh-mediated proliferation and Gli protein accumulation, and gain-of-function of Notch is sufficient to extend the window of Hh responsiveness in a subset of Müller glia. Both Hh-RPC monolayer establishment and Notch mediated Hh-responsiveness required Gli2. Taken together, we identified molecular cross-communication between the Hh pathway and two major pathways, Notch and RTK, during retinogenesis, advancing our understanding of mechanisms that influence Hh to control neural progenitor growth.
27

The Epidermal Growth Factor Receptor (EGFR) Is Proteolytically Modified by the Matriptase-Prostasin Serine Protease Cascade in Cultured Epithelial Cells

Chen, Mengqian, Chen, Li Mei, Lin, Chen Yong, Chai, Karl X. 01 May 2008 (has links)
Prostasin is expressed at the apical surface of normal epithelial cells and suppresses in vitro invasion of cancer cells. Prostasin re-expression in the PC-3 prostate carcinoma cells down-regulated the epidermal growth factor receptor (EGFR) protein expression and EGF-induced phosphorylation of the extracellular signal-regulated kinases (Erk1/2). We report here that prostasin and its activating enzyme matriptase are capable of inducing proteolytic cleavages in the EGFR extracellular domain (ECD) when co-expressed in the FT-293 cells, generating two amino-terminally truncated fragments EGFR135 and EGFR110, at 135 and 110 kDa. Prostasin's role in EGFR cleavage is dependent on the serine active-site but not the GPI-anchor. The modifications of EGFR were confirmed to be on the primary structure by deglycosylation. EGFR135 and EGFR110 are not responsive to EGF stimulation, indicating loss of the ligand-binding domains. EGFR110 is constitutively phosphorylated and in its presence Erk1/2 phosphorylation is increased in the absence of EGF. The protease-induced EGFR cleavages are not dependent on EGFR phosphorylation. The EGFR ECD proteolytic modification by matriptase-prostasin is also observed in the BEAS-2B normal lung epithelial cells, the BPH-1 benign prostate hyperplasia and the MDA-MB-231 breast cancer cell lines; and represents a novel mechanism for epithelial cells to modulate EGF-EGFR signaling.
28

Receptor Tyrosine Kinases as Druggable Targets in Glioblastoma: Do Signaling Pathways Matter?

Qin, Anna, Musket, Anna, Musich, Phillip R., Schweitzer, John B., Xie, Qian 01 January 2021 (has links)
Glioblastoma (GBM) is the most malignant primary brain tumor without effective therapies. Since bevacizumab was FDA approved for targeting vascular endothelial growth factor receptor 2 (VEGFR2) in adult patients with recurrent GBM, targeted therapy against receptor tyrosine kinases (RTKs) has become a new avenue for GBM therapeutics. In addition to VEGFR, the epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), hepatocyte growth factor receptor (HGFR/MET), and fibroblast growth factor receptor (FGFR) are major RTK targets. However, results from clinical Phase II/III trials indicate that most RTK-targeting therapeutics including tyrosine kinase inhibitors (TKIs) and neutralizing antibodies lack clinical efficacy, either alone or in combination. The major challenge is to uncover the genetic RTK alterations driving GBM initiation and progression, as well as to elucidate the mechanisms toward therapeutic resistance. In this review, we will discuss the genetic alterations in these 5 commonly targeted RTKs, the clinical trial outcomes of the associated RTK-targeting therapeutics, and the potential mechanisms toward the resistance. We anticipate that future design of new clinical trials with combination strategies, based on the genetic alterations within an individual patient's tumor and mechanisms contributing to therapeutic resistance after treatment, will achieve durable remissions and improve outcomes in GBM patients.
29

Quantitative studies of RET activation, deactivation and trafficking kinetics upon stimulation by its natural ligand Artemin

Li, Simin 12 August 2016 (has links)
Receptor tyrosine kinases (RTKs) are key regulators of critical cellular processes, such as cell cycle, differentiation, proliferation, apoptosis and survival. Mutations, hyperactivity and loss of function of RTKs are responsible for numerous diseases. Because of the therapeutic importance of RTK signaling, intensive studies have been devoted to understanding the signaling mechanisms of RTKs, and the key components in their signaling networks. However, studying the cellular responses to RTK stimulation in a native cellular context is technically challenging. Consequently, many details of RTK signaling kinetics, and the underlying molecular mechanisms of action, remain unclear. The RET receptor tyrosine kinase is important for neuronal cell survival and function, and for the development of the kidneys and nervous system. Gain of function of RET leads to tumor formation, while loss of function in RET’s kinase activity is associated with the developmental kidney defect Hirschsprung’s disease. RET is activated by ligands of glial cell line-derived neurotrophic factor (GDNF) family, which consist of four homologs—GDNF, Neuturin, Artemin (ART) and Persephin. GDNF family ligands activate RET only in the presence of GPI-linked co-receptors (GFRα1–4). Formation of the pentameric ligand/co-receptor2/RET2 complex leads to dimerization of RET and autophosphrylation of its cytoplasmic kinase domain. RET phosphorylation results in the activation of multiple downstream signaling pathways, including the Ras-Raf-MEK-ERK and PI3K-Akt pathways. The ERK and Akt signaling pathways participate in a variety of cellular activities, including cell survival, proliferation, and differentiation. My project addresses the following questions: (1) What are the kinetics of RET activation and deactivation processes after ART stimulation? (2) How is RET activation coupled to the phosphorylation of ERK1/2 and Akt? (3) How does ligand-induced internalization of RET affect RET signaling? (4) How does each step in the RET-Ras-Raf-MEK-ERK cascade quantitatively regulate ERK phosphorylation levels? The results will elucidate the spatial and temporal dynamics of RET signaling upon stimulation by ART, and to determine how downstream signaling is regulated by the amplitude and timing of RET activation. Overall, the thesis aims to advance our understanding of RTK signaling, by establishing methods and principles that can potentially be applied to other RTK systems.
30

Oligomeric Status of Discoidin Domain Receptor Modulates Collagen Binding, Mechanics, and Receptor Phosphorylation

Yeung, David Alexander 15 August 2018 (has links)
No description available.

Page generated in 0.0682 seconds