• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular cloning and characterization of an orphan nuclear receptor, estrogen receptor-related receptor (ERR) and its isoforms, in noble rat prostate.

January 2003 (has links)
Lui, Ki. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 163-171). / Abstracts in English and Chinese. / Abstract (English) --- p.i / Abstract (Chinese) --- p.v / Acknowledgements --- p.vii / Abbreviations --- p.ix / Table of Content --- p.x / Chapter Chapter 1. --- Introduction / Chapter 1.1 --- Overview and Endocrinology of hormones and hormone receptors --- p.1 / Chapter 1.2 --- Hormone receptors: membrane bounded receptors --- p.3 / Chapter 1.3 --- Hormone receptors: steroid nuclear receptors --- p.4 / Chapter 1.4 --- "Estrogen, estrogen receptor alpha and beta (ERa, ERβ) and prostate gland" --- p.6 / Chapter 1.5 --- Orphan nuclear receptors --- p.10 / Chapter 1.6 --- The first orphan receptors identified-estrogen receptor related receptors --- p.12 / Chapter 1.6.1 --- Estrogen receptor related receptor alpha (ERRα) --- p.13 / Chapter 1.6.2 --- Estrogen receptor related receptor alpha (ERRβ) --- p.17 / Chapter 1.6.3 --- Estrogen receptor related receptor alpha (ERRγ) --- p.19 / Chapter 1.7 --- Aim of study --- p.21 / Figure 1.1 Mechanism of activation of classical nuclear receptor by ligand --- p.23 / Figure 1.2 Distribution of ERa and ERβ in human body --- p.24 / Chapter Chapter 2. --- Methods and Materials / Chapter 2.1 --- Origin and supply of Noble rats --- p.25 / Chapter 2.2 --- Cell culture / Chapter 2.2.1 --- Cell lines and culture media --- p.26 / Chapter 2.2.2 --- Cell culture onto cover slips for immunohistochemistry --- p.27 / Chapter 2.3 --- RNA preparation / Chapter 2.3.1 --- Total RNA extraction --- p.27 / Chapter 2.3.2 --- mRNA extraction by Oligote´xёØ procedure --- p.29 / Chapter 2.3.3 --- mRNA extraction by Fast Track 2.0 procedure --- p.30 / Chapter 2.4 --- Molecular cloning by Rapid Amplification of cDNA Ends (RACE) / Chapter 2.4.1 --- Molecular cloning of rERRα --- p.31 / Chapter 2.4.2 --- Molecular cloning of rERRβ --- p.36 / Chapter 2.4.3 --- Molecular cloning of rERRγ --- p.42 / Chapter 2.5 --- Molecular cloning into pCRII TOPO cloning vector --- p.47 / Chapter 2.6 --- Sequencing analysis of DNA sequence by dRodamine® or BigDye® --- p.47 / Chapter 2.7 --- DNA sequence analysis --- p.49 / Chapter 2.8 --- Reverse transcription and RT-PCR --- p.49 / Chapter 2.9 --- Southern blotting analysis / Chapter 2.9.1 --- Preparation of DNA blot membrane --- p.51 / Chapter 2.9.2 --- Purification of DNA fragment from agarose gel for DIG-DNA labeling --- p.52 / Chapter 2.9.3 --- Preparation of the DIG-labeled DNA probe --- p.53 / Chapter 2.9.4 --- Membrane hybridization and colorimetric detection --- p.53 / Chapter 2.10 --- In-situ hybridization histochemistry / Chapter 2.10.1 --- Linearization of DNA plasmid --- p.55 / Chapter 2.10.2 --- Synthesis of riboprobe --- p.56 / Chapter 2.10.3 --- Hybridization and detection --- p.56 / Chapter 2.11 --- Western blotting analysis / Chapter 2.11.1 --- Protein extraction --- p.59 / Chapter 2.11.2 --- Casting of SDS-PAGE electrophoresis --- p.59 / Chapter 2.11.3 --- Polyacrylamide gel electrophoresis --- p.61 / Chapter 2.11.4 --- Protein blotting analysis --- p.61 / Chapter 2.12.1 --- Immunohistochemistry / Chapter 2.12.1 --- Histological preparation --- p.63 / Chapter 2.12.2 --- Immunohistochemistry --- p.64 / Table 1. List of culture media --- p.66 / Table 2. Primer sequences for RACE-PCR --- p.67 / Table 3. PCR conditions for RT-PCR --- p.68 / Table 4. Primer sequences for RT-PCR --- p.68 / Table 5. Reagent mixtures for linearization of the plasmid DNA --- p.69 / Table 6. Riboprobe synthesis by in-vitro transcription --- p.70 / Chapter Chapter 3. --- Results / Chapter 3.1 --- Cloning of full-length cDNA of rERRs by RACE-PCR --- p.71 / Chapter 3.2 --- Cloning of full-length cDNA of rERRα from rat ovary cDNA library --- p.72 / Chapter 3.3 --- Cloning of full-length cDNA of rERRβ from rat ventral prostate --- p.76 / Chapter 3.4 --- Cloning of full-length cDNA of rERRγ from rat prostate --- p.80 / Chapter 3.5 --- Expression distribution of ERRs detected by RT-PCR --- p.83 / Chapter 3.6 --- mRNA expression of ERRs detected by in-situ hybridization --- p.86 / Chapter 3.7 --- Protein expression of ERRa and ERRγ detected by western blotting --- p.87 / Chapter 3.8 --- Expression of ERRa and ERRγ detected by immunohistochemistry --- p.88 / Figure 3.1 Full-length DNA sequence of rERRα --- p.92 / Figure 3.2 Predicted amino acid sequence of rERRα --- p.93 / "Figure 3.3 DNA sequence alignment of rat, mouse and human ERRα" --- p.94 / "Figure 3.4 Amino acid sequence alignment analysis of rat, mouse and human ERRα" --- p.95 / Figure 3.5 Full-length DNA sequence of rERRβ --- p.96 / Figure 3.6 Predicted amino acid sequence of rERRβ --- p.97 / "Figure 3.7 DNA sequence alignment of rat, mouse and human ERRβ" --- p.98 / "Figure 3.8 Amino acid sequence alignment analysis of rat, mouse and human ERRβ" --- p.99 / Figure 3.9 Full-length DNA sequence of rERRγ --- p.100 / Figure 3.10 Predicted amino acid sequence of rERRγ --- p.101 / "Figure 3.11 DNA sequence alignment of rat, mouse and human ERRγ" --- p.102 / "Figure 3.12 Amino acid sequence alignment analysis of rat, mouse and human ERRγ" --- p.103 / Figure 3.13 Restriction enzyme cutting of full-length plasmids --- p.104 / Figure 3.14 Expression pattern of rERRα in male sex accessory sex glands by RT-PCR --- p.105 / Figure 3.15 Expression pattern of rERRα in urinary system and female sex organs by RT-PCR --- p.106 / Figure 3.16 Tissue expression of rERRα by RT-PCR --- p.107 / Figure 3.17 In-situ hybridization of ERRα in ovary --- p.108 / Figure 3.18 Western blotting of ERRα --- p.109 / Figure 3.19 Immunohistochemistry of ERRα in ovary --- p.110 / Figure 3.20 Expression pattern of rERRβ in male sex accessory sex glands by RT-PCR --- p.111 / Figure 3.21 Expression pattern of rERRβ in urinary system and female sex organs by RT-PCR --- p.112 / Figure 3.22 Tissue expression of rERRβ by RT-PCR --- p.113 / Figure 3.23 In-situ hybridization of ERRβ in rat prostate --- p.114 / Figure 3.24 Negative control of in-situ hybridization of ERRβ in rat prostate --- p.115 / Figure 3.25 Expression pattern of rERRγ in male sex accessory sex glands by RT-PCR --- p.116 / Figure 3.26 Expression pattern of rERRy in urinary system and female sex organs by RT-PCR --- p.117 / Figure 3.27 Tissue expression of rERRγ by RT-PCR --- p.118 / Figure 3.28 Expression pattern of rERRγ in different prostatic cancer cell lines and xenografts by RT-PCR --- p.119 / Figure 3.29 In-situ hybridization of ERRγ in rat prostate --- p.120 / Figure 3.30 Negative control of in-situ hybridization of ERRβ in rat prostate --- p.121 / Figure 3.31 Western blotting of ERRγ --- p.122 / Figure 3.32 Immunohistochemistry of ERRγ in ERRy-transfected MCF-7 cells --- p.123 / Figure 3.33 Immunohistochemistry of ERRγ in ventral prostate of rat --- p.124 / Figure 3.34 Immunohistochemistry of ERRγ in lateral prostate of rat --- p.125 / Figure 3.35 Immunohistochemistry of ERRγ in dorsal prostate of rat --- p.126 / Figure 3.36 Immunohistochemistry of ERRγ in testis of rat --- p.127 / Figure 3.37 Immunohistochemistry of ERRγ in epididymis of rat --- p.128 / Figure 3.38 Immunohistochemistry of ERRγ in brown adipose tissues of rat --- p.129 / Figure 3.39 Immunohistochemistry of ERRγ in brain of rat --- p.130 / Figure 3.40 Immunohistochemistry of ERRγ in brain of rat --- p.131 / Chapter Chapter 4. --- Discussion / Chapter 4.1 --- Sequence analysis of the full-length cDNA sequences of the rat estrogen receptor-related receptors (ERRs) --- p.132 / Chapter 4.2 --- Ligand independence and constitutive self-activation of estrogen receptor-related receptors --- p.133 / Chapter 4.3 --- Board expression pattern of estrogen receptor-related receptors --- p.138 / Chapter 4.3.1 --- Board expression pattern of estrogen receptor-related receptor alpha --- p.138 / Chapter 4.3.2 --- Board expression pattern of estrogen receptor-related receptor beta --- p.140 / Chapter 4.3.3 --- Board expression pattern of estrogen receptor-related receptor gamma --- p.141 / Chapter 4.4 --- Expression of ERRs in the prostate gland --- p.143 / Chapter 4.5 --- Expression of ERRs in the prostatic cell lines and cancer xenografts --- p.147 / Chapter 4.6 --- Expression of ERRs in the ERRγ-transfected MCF-7 cells --- p.149 / Chapter 4.7 --- Expression of ERRs in the testis and epididymis --- p.149 / Chapter 4.8 --- Expression of ERRs in the adipose tissue --- p.150 / Chapter 4.9 --- Expression of ERRs in the ovary --- p.151 / Chapter 4.10 --- Expression of ERRs in the brain --- p.153 / Figure 5.1 Map of full-length clone of rERRα --- p.155 / Figure 5.2 Map of full-length clone of rERRβ --- p.156 / Figure 5.3 Map of full-length clone of rERRα --- p.157 / Figure 5.4 Comparison of the homology of amino acid sequences amongst ERs and ERRs --- p.158 / Figure 5.5 Phylogeny tree of nuclear receptors --- p.159 / Figure 5.6 Relationship of different prostatic cell lines and xenografts --- p.160 / Chapter Chapter 5. --- Summary --- p.161 / References --- p.163-171
2

Characterization of the ligand-binding specificity and transcriptional properties of estrogen receptor homodimeric/heterodimeric complexes

Yuan, Xiaohui, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2001. / Typescript. Vita. Includes bibliographical references (leaves 228-272). Also available on the Internet.
3

Effect of phytoestrogens on low-density- lipoprotein receptor and apolipoprotein A-I expression in HepG2 cells.

January 2005 (has links)
Yuen Yee Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 108-125). / Abstracts in English and Chinese. / TITLE PAGE --- p.1 / ACKNOWLEGDEMENTS --- p.2 / ABSTRACT --- p.3 / 摘要 --- p.5 / table of contents --- p.7 / list of figures and tables --- p.13 / CHAPTER 1 GENERAL INTRODUCTION --- p.16 / Chapter 1.1 --- role of PHYTOESTROGENS in soy and red WINE the PREVENTION OF CARDIOVASCULAR DISEASES (CVD) --- p.17 / Chapter 1.1.1 --- INTRoduction and Classification of Phytoestrogens --- p.17 / Chapter 1.1.2 --- estrogenic1ty of phytoestrogens and theIr abundancesin Plasma --- p.18 / Chapter 1.1.3 --- phytoestrogens as one of the active components In cvd Protection --- p.21 / Chapter 1.1.4 --- effects of Phytoestrogens on LDL Receptor and Apolipoprotein A-1 --- p.22 / Chapter 1.2 --- role of estrogen receptors (ers) in gene regulation --- p.24 / Chapter 1.2.1 --- "structure, Classification and tissue distribution of ERS" --- p.24 / Chapter 1.2.2 --- ligands for ERS --- p.25 / Chapter 1.2.3 --- mechaniSMS OF LIgands-ERS complex in GENE regulation --- p.27 / Chapter 1.2.4 --- ligand-independent ER activation --- p.28 / Chapter 1.3 --- aims and scopes of investigation --- p.29 / Chapter CHAPTER 2 --- MATERIALS AND METHODS --- p.30 / Chapter 2.1 --- chemicals and materials --- p.30 / Chapter 2.1.1 --- Chemicals --- p.30 / Chapter 2.1.2 --- Plasmids --- p.30 / Chapter 2.2 --- mammalian cell culture maintainence --- p.30 / Chapter 2.2.1 --- Maintenance of Cells --- p.31 / Chapter 2.2.2 --- Preparation of Cell Stock --- p.31 / Chapter 2.2.3 --- Cell Recovery from Liquid Nitrogen Stock --- p.31 / Chapter 2.3 --- manipulation of dna --- p.31 / Chapter 2.3.1 --- isolation of HEPG2 cells genonmic DNA --- p.31 / Chapter 2.3.2 --- separation and purification of dna from agarose gel --- p.31 / Chapter 2.3.3 --- Restriction digestionof DNA --- p.32 / Chapter 2.3.4 --- Ligation of DNA Fragments --- p.32 / Chapter 2.3.5 --- Transformation of --- p.32 / Chapter 2.3.6 --- Small Scale Plasmids Purification from DH5a --- p.32 / Chapter 2.4 --- construction of expression and reporter plasmids --- p.33 / Chapter 2.4.1 --- Construction of Estrogen Receptorα (Erα) Expression Vectors --- p.33 / Chapter 2.4.2 --- construction of reporter vectors of LDLR promoter and the Respective Mutants --- p.33 / Chapter 2.4.3 --- Construction of Reporter Vectors of APOAI Promoter and the Respective Mutants --- p.33 / Chapter 2.5 --- determination of promoter transcrtiption activities --- p.34 / Chapter 2.5.1 --- Transient Transfection of Cell with ERa Expression Vector and Promoter Reporter using Lipofectamine PLUS Reagent --- p.34 / Chapter 2.5.2 --- Dual Luciferase Assay --- p.34 / Chapter 2.6 --- semi-quantitative and quantitative rt-pcr assay --- p.34 / Chapter 2.6.1 --- Transient transfection of Cell with ERa Expression Vector Using Lipofectamine PLUS Reagent --- p.34 / Chapter 2.6.2 --- "Isolation of RNA using TRIzol® Reagent (Life Technology, USA)" --- p.35 / Chapter 2.6.3 --- Quantitation of RNA --- p.35 / Chapter 2.6.4 --- First Strand cDNA Synthesis --- p.35 / Chapter 2.6.5 --- Sem卜Quantitative PCR Reactions --- p.35 / Chapter 2.6.6 --- Quantitative PCR Reactions --- p.36 / Chapter 2.7 --- western blotting analysis --- p.36 / Chapter 2.8 --- statistical methods --- p.36 / Chapter CHAPTER 3 --- REGULATION BY PHYSIOLOGICAL LEVEL OF 17B-ESTRADIOL ON APOLIPOPROTEIN A-I AND LOW-DENSITY- LIPOPROTEIN RECEPTOR IN HEPG2 CELLS --- p.37 / Chapter 3.1 --- introduction --- p.37 / Chapter 3.2 --- results --- p.39 / Chapter 3.2.1 --- Determination of transient transfection functionality of estrogen receptors in hepg2 cells --- p.39 / Chapter 3.2.2 --- Effect of 17β-Estradiolon LDLR promoter transcription activity --- p.39 / Chapter 3.2.3 --- Effect of 17β-Estradiol on apoai promoter transcription activity --- p.40 / Chapter 3.2 --- discussion --- p.47 / Chapter CHAPTER 4 --- SOY ISOFLAVONES AND RESVERATROL DISPLAY DIFFERENT MECHANISM IN THE UP-REGULATION OF LOVV-DENSITY-LIPOPROTEIN RECEPTOR IN HEPG2 CELLS --- p.49 / Chapter 4.1 --- introduction --- p.49 / Chapter 4.2 --- results --- p.54 / Chapter 4.2.1 --- Association of ERα and isoflavones or resveratrol on LDLR promoter transcription activity --- p.54 / Chapter 4.2.2 --- Association of ERβ and isoflavones or resveratrol on LDLR promoter transcription activity --- p.54 / Chapter 4.2.3 --- "Role of MAP Kinase, PKA and PKC in isoflavones and resveratrol induced LDLR promoter transcription" --- p.55 / Chapter 4.2.4 --- Identification of promoter regions responsible for induction of LDLR transcription by isoflavones in the presence OF ERα --- p.55 / Chapter 4.2.5 --- Identification of promoter regions responsible for induction of LDLR TRANSCRIPTION BY resveratrol IN THE ABSENCE OF ERα --- p.56 / Chapter 4.3 --- DISCUSSION --- p.75 / Chapter CHAPTER 5 --- SOY ISOFLAVONES AND RESVERATROL UP-REGULATE APOLIPOPROTEIN A-I SIMILAR TO 17B-ESTRADIOL IN HEPG2 CELLS --- p.80 / Chapter 5.1 --- INTRODUCTION --- p.80 / Chapter 5.2 --- RESULTS --- p.84 / Chapter 5.2.1 --- Association of ERα phytoestrogens on APCAI gene expression --- p.84 / Chapter 5.2.2 --- Association of ERβ and isoflavones or resveratrol on APOAI promoter transcription activity --- p.85 / Chapter 5.2.3 --- "Role of MAP Kinase, PKA and PKC in isoflavones and resveratrol in APOAI promoter transcription in the presence of ERα" --- p.85 / Chapter 5.2.4 --- Identification of promoter regions responsible for induction of APOAI transcription by isoflavones and resveratrol in the presence of ERα --- p.85 / Chapter 5.3 --- DISCUSSION --- p.100 / Chapter CHAPTER 6 --- GENERAL DISCUSSION --- p.103 / Chapter CHAPTER 7 --- SUMMARY --- p.106 / BIBLIOGRAPHY --- p.108 / APPENDIX 1 ABBREVIATIONS --- p.126 / APPENDIX 2 MATERIALS AND METHODS --- p.129 / APPENDIX 3 PRIMER LISTS --- p.145 / APPENDIX 4 REAGENTS AND BUFFERS --- p.147

Page generated in 0.0801 seconds