• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular control of skeletal myoblast proliferation for cardiac repair /

Whitney, Marsha L. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 101-109).
2

The role of FGF signaling in retinal development

Hartge, Abbie A., January 2008 (has links) (PDF)
Thesis (M.S.)--University of Tennessee Health Science Center, 2008. / Title from title page screen (viewed on January 29, 2009). Research advisor: Dr. Michael A. Dyer, Ph.D. Document formatted into pages (vi, 47 p. : ill.). Vita. Abstract. Includes bibliographical references (p. 41-44).
3

Variable Expressivity with Apparent Reduced/Non-Penetrance in Crouzon Syndrome

Britto, Ajit Denis January 1998 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Objective: To determine whether specific mutations within the fibroblast growth factor receptor 2 (FGFR2) gene associated with Crouzon syndrome cause a phenotype with extreme variability of expression suggesting non-penetrance in clinically normal appearing individuals. Methods: Most mutations responsible for Crouzon syndrome occur in exons IIIa(U) or IIIc(B) of the FGFR2 gene, facilitating allelotyping by using polymerase chain reaction to mediate mutation analysis. Once a specific mutation is identified in the index case, remaining affected family members and clinically normal first-degree relatives are screened in order to correlate genotype with phenotype. Results: A novel missense mutation, a G to T transversion, involving the first base of codon 362 (Ala362Ser), was identified following DNA sequencing of exon IIIc, and a specific restriction fragment length polymorphism following BstNI enzyme digestion was found in all Crouzon-affected family members and in one clinically normal-appearing parent. Pattern profile analysis demonstrated a consistent collection of abnormal cephalometric measurements in the Crouzon affected family members, and to a lesser degree, in the clinically normal parent. Conclusion: We have identified a novel missense mutation in the FGFR2 gene predicting an Ala362Ser substitution that is shared by all family members affected by Crouzon syndrome, and a clinically normal appearing father. These data support non-penetrance of Crouzon syndrome.
4

Roles of IL-6, TNF-α and IL-1β in regulating growth hormone signaling and FGF19 signaling in the liver.

January 2013 (has links)
生長滯後是包括炎症性腸病在內的炎症疾病引起的併發症。實驗表明,炎症使肝臟對生長激素(GH)的作用變得不敏感或引起生長激素抵抗。生長激素抵抗會引起胰島素生長因子-1 (IGF-I)的表達下降,並且會啟動一系列的代謝反應。多年來的研究證明炎症因子白介素-6 (IL-6),腫瘤壞死因子 -α (TNF-α)和白介素-1β(IL-1β)參與肝臟生長激素抵抗的病理過程。然而這些炎症因子調控生長激素通路的具體機理尚不清楚。通過用人肝癌細胞系Huh-7和慢性炎症及急性炎症兩種老鼠模型,我們發現: 1) TNF-α和IL-1β抑制生長激素受體(GHR)的表達; 2) IL-6誘導細胞因子信號轉導抑制因子-3 (SOCS3)的高表達; 3) IL-6-SOCS3途徑對GH-IGF-I信號通路的抑制作用依賴于GHR的表達量,當TNF-α及IL-1β升高而使GHR的表達量下降後,IL-6就不再對GH-IGF-I信號通路有抑制作用。以上結果表明IL-6, TNF-α和IL-1β抑制肝臟生長激素信號通路的機制是不一樣的,這些結果或許對臨床上治療青少年中炎症引起的生長激素抵抗疾病有一定的指導意義。 / 成纖維細胞生長因子(FGF) 通過結合和啟動成纖維細胞生長因子受體(FGFR)而參與許多生理過程。FGF19屬於FGF15/19亞家族,這個亞家族還包括FGF21和FGF23。FGF19調節肝臟中膽汁酸的穩態及蛋白和糖原的合成。FGF19通過與FGFR4及共受體β-klotho結合來啟動信號通路。研究表明,TNF-α通過抑制共受體β-klotho的表達來抑制脂肪細胞中的FGF21信號通路。然而IL-6,TNF-α和IL-1β在調節肝臟FGF19信號通路中的作用尚不清楚。我們的體外細胞和體內動物實驗結果表明,IL-1β通過JNK和NF-κB通路抑制肝臟中β-klotho的表達。IL-6與TNF-α不調節Huh-7細胞中β-klotho的表達。 / 綜上所述,IL-6,TNF-α及IL-1β在肝臟生長激素及FGF19通路中起不同的調節作用。 / Growth failure is a major complication of inflammatory diseases including inflammatory bowel disease. Evidence suggests that during inflammation, the liver becomes resistant to growth hormone (GH) actions, leading to downregulation of the anabolic gene IGF-I and the activation of catabolic processes. Decades of studies demonstrated that pro-inflammatory cytokines IL-6, TNF-α and IL-1β are involved in the pathogenesis of hepatic GH resistance. However, the exact mechanisms used by these individual cytokines to regulate GH signaling are not defined. Using Huh-7 human hepatoma cells and mouse models of chronic and acute inflammation, we show that TNF-α and IL-1β but not IL-6 inhibited hepatic GH receptor (GHR) expression, and that IL-6 but not TNF-α and IL-1β stimulated expression of suppressor of cytokine signaling-3 (SOCS3). TNF-α/IL-1β and IL-6 acted primarily at GHR and SOCS3 respectively to inhibit the GH-IGF-I pathway. While TNF-α/IL-1β exerted a tonic inhibition on hepatic GH signaling, IL-6 activity is dependent on the active GH pathway. IL-6 lost its inhibition on the GH-IGF-I pathway when GHR expression was blocked as the inflammation progressed. These results reveal previously undefined distinct mechanisms used by TNF-α/IL-1β and IL-6 to inhibit the hepatic GH pathway. Our results may provide a new guidance for clinical practice in treating pediatric infammation-induced GH resistance. / Fibroblast growth factors (FGFs) play critical roles in many physiological processes by binding to and activating FGF receptor (FGFR) family. FGF19 belongs to FGF15/19 subfamily of FGFs that includes FGF15/19, FGF21 and FGF23. FGF19 has been shown to regulate bile acid homeostasis, and protein and glycogen synthesis in the liver. FGF19 binds FGFR4 and the co-receptor β-klotho to initiate signaling. Studies have shown that proinflammatory cytokines such as TNF-α can impair FGF21 signaling in adipose cells by repressing the expression of β-klotho. However, little is known about the effects of IL-6, TNF-α and IL-1β on regulating hepatic FGF19 signaling. In the present study, we found that IL-1β inhibited β-klotho expression both in vitro and in vivo, and this inhibition required JNK and NF-κB pathways. IL-6 and TNF-α did not inhibit β-klotho expression in Huh-7 cells. / Taken together, our results demonstrate that IL-6, TNF-α and IL-1β play different roles in regulating the GH and FGF-19 pathways in the liver. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Zhao, Yueshui. / Thesis (Ph.D.) Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 147-182). / Abstracts also in Chinese.
5

Decoding heparan sulfate /

Kreuger, Johan, January 2001 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2001. / Härtill 5 uppsatser.
6

Characterization of the FGF receptor signaling complex in Xenopus laevis during early embryonic development /

Ryan, Paula, January 1999 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, Faculty of Medicine, 1999. / Typescript. Bibliography: leaves 97-117.
7

Characterization of fibroblast growth factor receptor type I isoforms in Xenopus laevis embryonic development /

Nash, Gordon W., January 2003 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2003. / Bibliography: leaves 92-106. Also available online.
8

Enhanced bone formation during distraction osteogenesis in FGFR3 deficient mice

Hamade, Fares. January 2008 (has links)
Distraction Osteogenesis (DO) is a technique for bone lengthening and filling of bone defects following trauma, infection or resection of tumors. DO consists of an osteotomy of the bone to be lengthened, followed by controlled distraction of the bone segments with an external fixator until the desired lengthening is obtained (distraction phase). This is followed by the consolidation phase, during which the external fixator is kept in place until the newly formed bone in the distracted zone consolidates. This phase is long and may cause numerous problems. Ongoing research aims at finding a method to accelerate the consolidation of the newly formed bone. / Fibroblast Growth Factors (FGF) play a significant role in bone development and repair. FGF 18 has been shown to be the only FGF member to be expressed throughout both the distraction and the consolidation phases of DO. It was also reported that FGF18 is the physiological ligand of FGFR3. Therefore, we hypothesized that FGF18 and FGFR3 may have an important role in DO. / To test this hypothesis, we investigated DO in FGFR3 deficient mice (FGFR3-/-). (FGF18 deficient mice are not viable). A miniaturized DO apparatus was applied to the tibia followed by an osteotomy. Distraction began after a 5-day latency period at a rate of 0.2 mm/12 hours for 12 days. / Samples were collected at 3 time points comparing the mutants (FGFR3-/-) to their wild type litter' sates: end of distraction (17 days post-surgery), mid-consolidation (34 days post-surgery), and end of consolidation (51 days post surgery). The samples were analyzed using X-ray, DEXA, microCT, histology, biomechanical testing and Real-Time PCR. / Our results revealed that FGFR3 deficient mice showed accelerated bone formation compared to the W.T. littermates at mid-consolidation where the parameters measured revealed increased bone mineral density, bone mineral content and trabecular number in the mutant tibial samples. The newly regenerated bone consolidated faster in the FGFR3 knock-out mice and the bone was of better quality as revealed by biomechanical tests in which more force was needed to break the mutant bone because it exhibited higher resistance than the age matched wild-type sample. The marker gene expression patterns revealed an up-regulation of chondrogenic markers that suggest that the knock-out mice follow the endochondral ossification pathway during DO. All results were statistically significant. / These results show that signaling through FGFR3 acts to decrease bone formation during DO. Consequently, blocking FGFR3 may lead to accelerated bone formation in DO. This may have important clinical implications in attempts to improve the functional outcome of DO by decreasing the long duration that the external fixator has to be kept on.
9

The transition from progenitor cell to neuron : fibroblast growth factors and their role in retinal ganglion cell neurogenesis /

McCabe, Kathryn Leigh. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 100-117).
10

Enhanced bone formation during distraction osteogenesis in FGFR3 deficient mice

Hamade, Fares. January 2008 (has links)
No description available.

Page generated in 0.0876 seconds