• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of mechanisms underlying synergism between prostanoid EP₃ receptor agonists and strong vasoconstrictor agents.

January 2003 (has links)
Le Gengyun. / Thesis submitted in: December 2002. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 161-182). / Abstracts in English and Chinese. / Abstract --- p.i / Abbreviations --- p.v / Acknowledgements --- p.vii / Publications --- p.viii / Table of Contents --- p.ix / Chapter Chapter 1 --- INTRODUCTION --- p.1 / Chapter 1. --- Vasoconstrictors --- p.1 / Chapter 1.1 --- An overview of vascular smooth muscle contraction --- p.1 / Chapter 1.2 --- Strong and weak vasoconstrictors --- p.5 / Chapter 1.2.1 --- Mechanisms involved in TP receptor vasoconstriction --- p.6 / Chapter 1.2.1.1 --- Brief introduction to the TP receptor --- p.6 / Chapter 1.2.1.2 --- Second messenger systems --- p.6 / Chapter 1.2.1.3 --- G-protein-linked pathways --- p.7 / Chapter 1.2.1.3.1 --- G proteins --- p.7 / Chapter 1.2.1.3.2 --- G-protein-linked TP receptor signal transduction --- p.8 / Chapter 1.2.2 --- Mechanisms involved in α1-adrenoceptor vasoconstriction --- p.8 / Chapter 1.2.2.1 --- Brief introduction to the α1-adrenoceptor --- p.8 / Chapter 1.2.2.2 --- Second messenger systems --- p.9 / Chapter 1.2.2.3 --- G-protein-linked α-adrenoceptor signal transduction --- p.9 / Chapter 1.3 --- Prostanoid EP3 receptor agonists (weak vasoconstrictors) --- p.10 / Chapter 1.3.1 --- Prostanoids --- p.10 / Chapter 1.3.1.1 --- Biochemical characteristics of prostanoids --- p.10 / Chapter 1.3.1.1.1 --- Biosynthesis of prostanoids --- p.10 / Chapter 1.3.1.1.2 --- Metabolism of prostanoids --- p.11 / Chapter 1.3.1.2 --- Prostanoid receptors --- p.13 / Chapter 1.3.1.2.1 --- Structures --- p.13 / Chapter 1.3.1.2.2 --- Current Status of Classification --- p.14 / Chapter 1.3.1.2.3 --- Signal transduction --- p.16 / Chapter 1.3.1.2.4 --- Distribution --- p.18 / Chapter 1.3.1.2.5 --- Physiological functions --- p.18 / Chapter 2. --- Interactions between vasoconstrictors --- p.19 / Chapter 2.1 --- Cross-talk between G-protein-coupled receptors --- p.19 / Chapter 2.1.1 --- Cross-talk between different receptor families --- p.19 / Chapter 2.1.2 --- Cross-talk between subtypes of the same receptor family --- p.21 / Chapter 2.1.3 --- Cross-talk at the effector level --- p.23 / Chapter 2.2 --- Proposed pathways involved in synergistic interactions --- p.24 / Chapter 2.2.1 --- Rho and Rho-associated kinase --- p.24 / Chapter 2.2.1.1 --- Rho family and its identification --- p.24 / Chapter 2.2.1.2 --- Mechanism(s) of Rho contribution in vasoconstriction --- p.25 / Chapter 2.2.1.3 --- Interactions between Rho and other pathways --- p.26 / Chapter 2.2.2 --- Receptor tyrosine kinases --- p.29 / Chapter 2.2.2.1 --- RTK family --- p.29 / Chapter 2.2.2.2 --- Activation of RTKs --- p.29 / Chapter 2.2.2.3 --- Mechanism(s) of RTK contribution in vasoconstriction --- p.30 / Chapter 2.2.2.4 --- Interactions between RTKs and MAPKs --- p.31 / Chapter 2.2.3 --- Mitogen-activated protein kinase --- p.34 / Chapter 2.2.3.1 --- p38 MAPK --- p.35 / Chapter 2.2.3.2 --- JNK MAPK --- p.35 / Chapter 2.2.3.3 --- ERK MAPK --- p.36 / Chapter 2.2.3.4 --- Interactions between MAPK and GPCRs --- p.37 / Chapter Chapter 2 --- FORCE MEASUREMENT SYSTEM --- p.41 / Chapter 1. --- Introduction --- p.41 / Chapter 2. --- Materials --- p.41 / Chapter 2.1 --- Drugs --- p.41 / Chapter 2.2 --- Chemicals --- p.41 / Chapter 2.3 --- Solutions --- p.46 / Chapter 3. --- Methods --- p.46 / Chapter 3.1 --- Isolated smooth muscle preparations and organ bath set-up --- p.46 / Chapter 3.2 --- Data analysis --- p.47 / Chapter Chapter 3 --- VASOCONSTRICTORS AND THEIR INTERACTIONS --- p.48 / Chapter 1. --- Introduction --- p.48 / Chapter 2. --- Materials and Methods --- p.48 / Chapter 2.1 --- Materials --- p.48 / Chapter 2.2 --- Methods --- p.51 / Chapter 2.2.1 --- Isolated tissue preparations --- p.51 / Chapter 2.2.2 --- Experimental protocols --- p.51 / Chapter 2.2.3 --- Statistical analysis --- p.52 / Chapter 3. --- Results --- p.55 / Chapter 3.1 --- Typical vasoconstrictor profiles of agonists --- p.55 / Chapter 3.1.1 --- Sulprostone contraction --- p.55 / Chapter 3.1.2 --- U-46619 contraction --- p.55 / Chapter 3.1.3 --- Phenylephrine contraction --- p.56 / Chapter 3.2 --- Synergistic interactions between sulprostone and strong vasoconstrictors --- p.58 / Chapter 3.2.1 --- Enhancement of U-46619 response by sulprostone --- p.58 / Chapter 3.2.2 --- Enhancement of phenylephrine response by sulprostone --- p.58 / Chapter 3.2.3 --- Enhancement of sulprostone response by phenylephrine --- p.58 / Chapter Chapter 4 --- INVESTIGATION OF PATHWAYS INVOLVED IN EP3 AGONIST- INDUCED VASOCONSTRICTION --- p.64 / Chapter 1. --- Introduction --- p.64 / Chapter 2. --- Materials and methods --- p.65 / Chapter 2.1 --- Materials --- p.65 / Chapter 2.2 --- Methods --- p.65 / Chapter 2.2.1 --- Isolated tissue preparations --- p.65 / Chapter 2.2.2 --- Experimental protocols --- p.65 / Chapter 2.2.3 --- Statistical analysis --- p.69 / Chapter 3. --- Results --- p.70 / Chapter 3.1 --- Effects of tyrosine kinase inhibitors --- p.70 / Chapter 3.2 --- Effects of MAPK inhibitors --- p.82 / Chapter 3.2.1 --- Effects of MAPK inhibitors on U-46619 responses --- p.82 / Chapter 3.2.2 --- Effects of MAPK inhibitors on sulprostone responses --- p.91 / Chapter 3.2.3 --- Effects of MAPK inhibitors on phenylephrine responses --- p.100 / Chapter 3.3 --- Effects of Rho-kinase inhibitors --- p.104 / Chapter Chapter 5 --- TRANSFECTED CELL LINE SYSTEM --- p.111 / Chapter 1. --- Introduction --- p.111 / Chapter 2. --- Materials and methods --- p.114 / Chapter 2.1 --- Materials --- p.114 / Chapter 2.1.1 --- Plasmids and vectors --- p.114 / Chapter 2.1.2 --- Radioactive agents --- p.114 / Chapter 2.1.3 --- Chemicals --- p.114 / Chapter 2.1.4 --- Restriction digest enzymes --- p.115 / Chapter 2.1.5 --- "Culture media, buffers and solutions" --- p.115 / Chapter 2.1.5.1 --- Culture media / Chapter 2.1.5.2 --- Buffers and solutions --- p.115 / Chapter 2.2 --- Methods --- p.116 / Chapter 2.2.1 --- Transfected cell lines --- p.116 / Chapter 2.2.1.1 --- Subcloning of hEP3-1 receptor and hTP receptor cDNA --- p.116 / Chapter 2.2.1.1.1 --- Plasmid recovery / Chapter 2.2.1.1.2 --- Preparation of competent cells --- p.116 / Chapter 2.2.1.1.3 --- Transformation of competent cells --- p.117 / Chapter 2.2.1.1.4 --- Extraction of DNA by QIAGEN Plasmid Mini Kit --- p.117 / Chapter 2.2.1.1.5 --- Restriction enzymes digestion and dephosphorylation --- p.117 / Chapter 2.2.1.1.6 --- DNA recovery and ligation / Chapter 2.2.1.1.7 --- Positive recombinant DNA selection --- p.119 / Chapter 2.2.1.2 --- Cell culture --- p.119 / Chapter 2.2.1.3 --- Transient transfection of CHO cells --- p.121 / Chapter 2.2.1.4 --- Mesurement of adenylate cyclase activity --- p.121 / Chapter 2.2.1.4.1 --- Preparation of columns --- p.121 / Chapter 2.2.1.4.2 --- [3H]-cAMP assays --- p.122 / Chapter 2.2.1.5 --- Measurement of phospholipase C activity --- p.122 / Chapter 2.2.1.5.1 --- Preparation of columns --- p.123 / Chapter 2.2.1.5.2 --- [3H]-inositol phosphate assay --- p.123 / Chapter 2.2.2 --- Data analysis --- p.124 / Chapter 3. --- Results --- p.125 / Chapter 3.1 --- Subcloning of hEP3-1and hTPα receptor cDNA into expression vectors --- p.125 / Chapter 3.2 --- Measurement of cAMP and IP production in transfected CHO cells --- p.133 / Chapter 3.2.1 --- Effect of varying receptor cDNA concentration on agonist-stimulated [3H]-cAMP and [3H]-IP production in transiently transfected CHO cells --- p.133 / Chapter 3.2.2 --- Effect of agonists on intracellular [3H]-IP or [3H]-cAMP productionin CHO cells transfected with hTPα or hEP3-1 --- p.133 / Chapter 3.3 --- Summary --- p.134 / Chapter Chapter 6 --- GENERAL DISCUSSION AND CONCLUSIONS --- p.137 / Chapter 1. --- Vasoconstrictors and their interactions --- p.137 / Chapter 1.1 --- Vasoconstrictors --- p.137 / Chapter 1.2 --- Synergism --- p.138 / Chapter 2. --- Investigation of possible pathways --- p.140 / Chapter 2.1 --- Rho-associated kinase --- p.140 / Chapter 2.2 --- Receptor tyrosine kinase --- p.147 / Chapter 2.3 --- Mitogen-activated protein kinase (MAPK) --- p.151 / Chapter 3. --- Effect of vehicles --- p.155 / Chapter 4. --- Biochemical studies in transfected CHO cells --- p.157 / Chapter 5. --- Conclusions --- p.158 / Appendix I --- p.159 / Buffers and Solutions used in transfected system --- p.159 / Chapter 1. --- Buffers --- p.159 / Chapter 2. --- Solutions --- p.159 / REFERENCES --- p.161
2

Investigation of the mechanisms underlying the contractile action of prostanoid EP3-receptor agonists on vascular smooth muscle. / CUHK electronic theses & dissertations collection

January 2001 (has links)
shum Wai Chi. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. 259-279). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
3

The effects of prostanoid EP₃ receptor agonists and their interactions with other agents on rat vascular preparations.

January 2003 (has links)
Hung Hoi Yan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 138-160). / Abstracts in English and Chinese. / ABSTRACT --- p.i / ACKNOWLEDGEMENTS --- p.v / PUBLICATIONS BASED ON THE WORK IN THIS THESIS --- p.vi / TABLE OF CONTENTS --- p.vii / ABBREVIATIONS --- p.ix / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Prostanoids and vasoconstriction --- p.1 / Chapter 1.1.1 --- EP3 receptors --- p.2 / Chapter 1.1.2 --- EP1 receptors --- p.16 / Chapter 1.1.3 --- FP receptors --- p.23 / Chapter 1.1.4 --- TP receptors --- p.30 / Chapter 1.2 --- Role of Ca2+ in vascular smooth muscle contraction --- p.36 / Chapter 1.2.1 --- Ca2+ as second messenger --- p.36 / Chapter 1.2.2 --- Ca2+ sensitization --- p.41 / Chapter 1.3 --- Aim of study --- p.48 / Chapter CHAPTER 2 --- METHODS AND MATERIALS --- p.49 / Chapter 2.1 --- Experiments with rat femoral artery --- p.49 / Chapter 2.2 --- Experiments with guinea-pig trachea --- p.56 / Chapter 2.3 --- Materials --- p.59 / Chapter 2.4 --- Data analysis --- p.61 / Chapter 2.5 --- Measurement of rat knee joint blood flow --- p.62 / Chapter CHAPTER 3 --- RESULTS --- p.68 / Chapter 3.1 --- Effects of EP3 agonists and other vasoactive agents on the rat femoral artery preparation --- p.68 / Chapter 3.2 --- Interactions between EP3 agonists and other vasoactive agents --- p.69 / Chapter 3.2.1 --- Interactions with phenylephrine --- p.69 / Chapter 3.2.2 --- Interactions with KCl --- p.71 / Chapter 3.3 --- Effect of nifedipine --- p.72 / Chapter 3.4 --- Effects of Rho-kinase inhibitors --- p.73 / Chapter 3.5 --- Effect of EP1 receptor antagonist --- p.76 / Chapter 3.6 --- Other properties of the rat femoral artery --- p.77 / Chapter 3.8 --- Effect of sulprostone on blood flow of rat knee joint --- p.79 / Chapter CHAPTER 4 --- DISCUSSION --- p.118 / Chapter 4.1 --- Effect of PGE analogues on rat femoral artery --- p.118 / Chapter 4.1.1 --- Prostanoid receptor (s) responsible for the contractile effects --- p.118 / Chapter 4.1.2 --- Prostanoid Receptors involved in the synergism --- p.122 / Chapter 4.1.3 --- Synergism models --- p.124 / Chapter 4.2 --- Mechanisms of synergistic contractions --- p.126 / Chapter 4.2.1 --- Role of Ca2+ influx --- p.126 / Chapter 4.2.2 --- Role of Ca2+ sensitization --- p.127 / Chapter 4.3 --- Effect of sulprostone in vivo --- p.132 / Chapter 4.4 --- Conclusion --- p.136 / REFERENCES --- p.138

Page generated in 0.1134 seconds