• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

JOINT CHARGING, ROUTING, AND POWER ALLOCATIONS FOR RECHARGEABLE WIRELESS SENSOR NETWORKS

Guo, Chunhui January 2022 (has links)
Prolonging the battery lifetime of sensors has been one of the most important issues in wireless sensor networks (WSNs). With the development of Wireless Power Transfer (WPT) technology, sensors can be recharged and possibly have infinite lifetime. One common approach to achieving this is having a wireless charging vehicle (WCV) move in the system coverage area and charge sensors nearby when it stops. The duration that the WCV stays at each charging location, the amount of traffic that each sensor carries, and the transmission power of individual sensors are closely related, and their joint optimization affects not only the data transmissions in the WSN but also energy consumption of the system. This problem is formulated as a mixed integer and nonconvex optimization problem. Different from existing work that either solves similar problems using genetic algorithms or considers charging sensors based on clusters, we consider the optimum charging time for each sensor, and solve the joint communication and charging problem optimally. Numerical results demonstrate that our solution can significantly reduce the average power consumption of the system, compared to the cluster-based charging solution. / Thesis / Master of Applied Science (MASc) / In a wireless sensor network (WSN), sensor nodes monitor the physical environment and forward the collected data to a data sink for further processing. Sensors are battery powered and, therefore, prolonging the lifetime of their batteries is critically important. In a rechargeable WSN (RWSN), prolonging the battery lifetime of sensors is achieved through reducing communication energy and recharging the batteries periodically. Reducing the communication energy consumption is done through choosing the best forwarding sensors (i.e., routing) for data collected by each sensor and deciding the transmission power of each sensor (i.e., power allocation). Recharging the batteries is achieved through harvesting energy from external sources. In this thesis, we consider a RWSN that uses wireless power transfer as the energy harvesting technology and jointly optimizes charging and communications in order to minimize the power consumption of the RWSN.

Page generated in 0.0592 seconds