Spelling suggestions: "subject:"recherche adaptative"" "subject:"echerche adaptative""
1 |
Méthode de recherche à grand voisinage pour un problème de tournées de véhicules avec flotte privée et transporteur externeEdoukou, Frédéric Aka Bilé 04 1900 (has links)
Dans ce mémoire, nous étudions un problème de tournées de véhicules dans lequel une
flotte privée de véhicules n’a pas la capacité suffisante pour desservir les demandes des
clients. Dans un tel cas, on fait appel à un transporteur externe. Ce dernier n’a aucune
contrainte de capacité, mais un coût est encouru lorsqu’un client lui est affecté.
Il n’est pas nécessaire de mettre tous les véhicules de la flotte privée en service si
cette approche se révèle plus économique. L’objectif consiste à minimiser le coût fixe des
véhicules, puis le coût variable de transport et le coût chargé par le transporteur externe.
Notre travail consiste à appliquer la métaheuristique de recherche adaptative à grand
voisinage sur ce problème. Nous comparons nos résultats avec ceux obtenus précédemment
avec différentes techniques connues sur les instances de Christofides et celles de Golden. / In this master thesis, we study a vehicle routing problem in which a private fleet does not
have sufficient capacity to serve all customers. Therefore, an external common carrier is
required. The external common carrier has no constraint of capacity, but there is a cost
when a customer it assigned to it.
It is not necessary for all the vehicles of the private fleet to be used. The objective is
to minimize the sum of the fixed cost of the private fleet, the variable routing cost and the
external carrier cost.
Our work applies the adaptative large neighborhood search metaheuristic on this problem.
We compare our results with those obtained previously with different well-known
techniques on the benchmark instances of Christofides and Golden.
|
2 |
Tactical Vehicle Routing Planning with Application to Milk Collection and DistributionDayarian, Iman 12 1900 (has links)
De nombreux problèmes pratiques qui se posent dans dans le domaine de la logistique, peuvent être modélisés comme des problèmes de tournées de véhicules. De façon générale, cette famille de problèmes implique la conception de routes, débutant et se terminant à un dépôt, qui sont utilisées pour distribuer des biens à un nombre de clients géographiquement dispersé dans un contexte où les coûts associés aux routes sont minimisés. Selon le type de problème, un ou plusieurs dépôts peuvent-être présents. Les problèmes de tournées de véhicules sont parmi les problèmes combinatoires les plus difficiles à résoudre.
Dans cette thèse, nous étudions un problème d’optimisation combinatoire, appartenant aux classes des problèmes de tournées de véhicules, qui est liée au contexte des réseaux de transport. Nous introduisons un nouveau problème qui est principalement inspiré des activités de collecte de lait des fermes de production, et de la redistribution du produit collecté aux usines de transformation, pour la province de Québec. Deux variantes de ce problème sont considérées. La première, vise la conception d’un plan tactique de routage pour le problème de la collecte-redistribution de lait sur un horizon donné, en supposant que le niveau de la production au cours de l’horizon est fixé. La deuxième variante, vise à fournir un plan plus précis en tenant compte de la variation potentielle de niveau de production pouvant survenir au cours de l’horizon considéré.
Dans la première partie de cette thèse, nous décrivons un algorithme exact pour la première variante du problème qui se caractérise par la présence de fenêtres de temps, plusieurs dépôts, et une flotte hétérogène de véhicules, et dont l’objectif est de minimiser le coût de routage. À cette fin, le problème est modélisé comme un problème multi-attributs de tournées de véhicules. L’algorithme exact est basé sur la génération de colonnes impliquant un algorithme de plus court chemin élémentaire avec contraintes de ressources.
Dans la deuxième partie, nous concevons un algorithme exact pour résoudre la deuxième variante du problème. À cette fin, le problème est modélisé comme un problème de tournées de véhicules multi-périodes prenant en compte explicitement les variations potentielles du niveau de production sur un horizon donné. De nouvelles stratégies sont proposées pour résoudre le problème de plus court chemin élémentaire avec contraintes de ressources, impliquant dans ce cas une structure particulière étant donné la caractéristique multi-périodes du problème général. Pour résoudre des instances de taille réaliste dans des temps de calcul raisonnables, une approche de résolution de nature heuristique est requise. La troisième partie propose un algorithme de recherche adaptative à grands voisinages où de nombreuses nouvelles stratégies d’exploration et d’exploitation sont proposées pour améliorer la performances de l’algorithme proposé en termes de la qualité de la solution obtenue et du temps de calcul nécessaire. / Many practical problems arising in real-world applications in the field of logistics can be modeled as vehicle routing problems (VRP). In broad terms, VRPs deal with designing optimal routes for delivering goods or services to a number of geographically scattered customers in a context in which, routing costs are minimized. Depending on the type of problem, one or several depots may be present. Routing problems are among the most difficult combinatorial optimization problems.
In this dissertation we study a special combinatorial optimization problem, belonging to the class of the vehicle routing problem that is strongly linked to the context of the transportation networks. We introduce a new problem setting, which is mainly inspired by the activities of collecting milk from production farms and distributing the collected product to processing plants in Quebec. Two different variants of this problem setting are considered. The first variant seeks a tactical routing plan for the milk collection-distribution problem over a given planning horizon assuming that the production level over the considered horizon is fixed. The second variant aims to provide a more accurate plan by taking into account potential variations in terms of production level, which may occur during the course of a horizon. This thesis is cast into three main parts, as follows:
In the first part, we describe an exact algorithm for the first variant of the problem, which is characterized by the presence of time windows, multiple depots, and a heterogeneous fleet of vehicles, where the objective is to minimize the routing cost.
To this end, the problem is modeled as a multi-attribute vehicle routing problem. The exact algorithm proposed is based on the column generation approach, coupled with an elementary shortest path algorithm with resource constraints.
In the second part, we design an exact framework to address the second variant of the problem. To this end, the problem is modeled as a multi-period vehicle routing problem, which explicitly takes into account potential production level variations over a horizon. New strategies are proposed to tackle the particular structure of the multi-period elementary shortest path algorithm with resource constraints.
To solve realistic instances of the second variant of the problem in reasonable computation times, a heuristic approach is required. In the third part of this thesis, we propose an adaptive large neighborhood search, where various new exploration and exploitation strategies are proposed to improve the performance of the algorithm in terms of solution quality and computational efficiency.
|
3 |
Méthodes exactes et heuristiques pour le problème de tournées de véhicules avec fenêtres de temps et réutilisation de véhiculesAzi, Nabila 08 1900 (has links)
Cette thèse porte sur les problèmes de tournées de véhicules avec
fenêtres de temps où un gain est associé à chaque client et où l'objectif est
de maximiser la somme des gains recueillis moins les coûts de transport.
De plus, un même véhicule peut effectuer plusieurs tournées durant
l'horizon de planification. Ce problème a été relativement peu étudié en dépit de son importance en pratique. Par exemple,
dans le domaine de la livraison de denrées périssables, plusieurs tournées de courte durée doivent être combinées afin de former des journées
complètes de travail. Nous croyons que ce type de
problème aura une importance de plus en plus grande dans le futur avec l'avènement du commerce électronique, comme les épiceries
électroniques, où les clients peuvent commander des produits par internet pour la livraison à domicile.
Dans le premier chapitre de cette thèse, nous présentons d'abord une revue de la
littérature consacrée aux
problèmes de tournées de véhicules avec gains ainsi qu'aux problèmes permettant une
réutilisation des véhicules. Nous présentons les
méthodologies générales adoptées pour les résoudre, soit les méthodes exactes,
les méthodes heuristiques et les méta-heuristiques. Nous discutons enfin des problèmes de tournées
dynamiques où certaines données sur le problème ne sont pas connues à l'avance.
Dans le second chapitre, nous décrivons un algorithme
exact pour résoudre un problème de tournées avec fenêtres de temps et réutilisation de véhicules où l'objectif premier est
de maximiser le nombre de clients desservis. Pour ce faire, le problème est modélisé comme un problème de tournées avec
gains. L'algorithme exact est basé sur une méthode de génération de colonnes couplée avec un algorithme de plus court
chemin élémentaire avec contraintes de ressources.
Pour résoudre des instances de taille réaliste dans des temps de calcul raisonnables, une approche de résolution de nature heuristique est requise.
Le troisième chapitre propose donc
une méthode de recherche adaptative à grand voisinage qui exploite les différents niveaux
hiérarchiques du problème (soit les journées complètes de travail des véhicules, les routes qui composent ces journées et les clients qui composent les routes).
Dans le quatrième chapitre, qui traite du cas dynamique,
une stratégie d'acceptation et de refus des nouvelles requêtes de service est proposée, basée sur une anticipation des
requêtes à venir. L'approche repose sur la génération de scénarios pour
différentes réalisations possibles des requêtes futures. Le coût d'opportunité de servir
une nouvelle
requête est basé sur une évaluation des scénarios avec et sans cette nouvelle requête.
Enfin, le dernier chapitre résume les contributions de cette thèse et propose quelques avenues
de recherche future. / This thesis studies vehicle routing problems with time windows, where a gain is associated
with each customer and where the objective is to maximize the total gain collected minus
the routing costs. Furthermore.
the same vehicle might be assigned to different routes during the planning horizon.
This problem has received little attention in the literature in
spite of its importance in practice. For example, in the
home delivery of perishable goods (like food), routes
of short duration must be combined to form complete workdays.
We believe that this type of problem will become increasingly important
in the future with the advent of electronic services, like e-groceries, where
customers can order goods through the Internet and get these goods
delivered at home.
In the first chapter of this thesis, we present a review of vehicle routing problems
with gains, as well as vehicle routing problems with
multiple use of vehicles. We discuss the general classes of
problem-solving approaches for these problems, namely, exact methods, heuristics and metaheuristics.
We also introduce dynamic vehicle routing problems, where new information is revealed
as the routes are executed.
In the second chapter, we describe an exact algorithm for a vehicle routing problem with
time windows and multiple use of vehicles, where the first objective is to maximize the number of
served customers. To this end, the problem is modeled as a vehicle routing problem with gains.
The exact algorithm is based on column generation, coupled with an elementary shortest path algorithm
with resource constraints.
To solve realistic instances in reasonable computation times, a heuristic approach is required.
The third chapter proposes an adaptative large neighborhood search where the various hierarchical
levels of the problem are exploited (i.e., complete vehicle workdays, routes within workdays and
customers within routes).
The fourth chapter deals with the dynamic case. In this chapter, a strategy for
accepting or rejecting new customer requests is proposed. This strategy is based on the
generation of multiple scenarios for different realizations of the requests in the future.
An opportunity cost for serving a new request is then computed, based on an evaluation of the
scenarios with and without the new request.
Finally, the last chapter summarizes the contributions of this thesis and proposes future research
avenues.
|
4 |
Tactical Vehicle Routing Planning with Application to Milk Collection and DistributionDayarian, Iman 12 1900 (has links)
De nombreux problèmes pratiques qui se posent dans dans le domaine de la logistique, peuvent être modélisés comme des problèmes de tournées de véhicules. De façon générale, cette famille de problèmes implique la conception de routes, débutant et se terminant à un dépôt, qui sont utilisées pour distribuer des biens à un nombre de clients géographiquement dispersé dans un contexte où les coûts associés aux routes sont minimisés. Selon le type de problème, un ou plusieurs dépôts peuvent-être présents. Les problèmes de tournées de véhicules sont parmi les problèmes combinatoires les plus difficiles à résoudre.
Dans cette thèse, nous étudions un problème d’optimisation combinatoire, appartenant aux classes des problèmes de tournées de véhicules, qui est liée au contexte des réseaux de transport. Nous introduisons un nouveau problème qui est principalement inspiré des activités de collecte de lait des fermes de production, et de la redistribution du produit collecté aux usines de transformation, pour la province de Québec. Deux variantes de ce problème sont considérées. La première, vise la conception d’un plan tactique de routage pour le problème de la collecte-redistribution de lait sur un horizon donné, en supposant que le niveau de la production au cours de l’horizon est fixé. La deuxième variante, vise à fournir un plan plus précis en tenant compte de la variation potentielle de niveau de production pouvant survenir au cours de l’horizon considéré.
Dans la première partie de cette thèse, nous décrivons un algorithme exact pour la première variante du problème qui se caractérise par la présence de fenêtres de temps, plusieurs dépôts, et une flotte hétérogène de véhicules, et dont l’objectif est de minimiser le coût de routage. À cette fin, le problème est modélisé comme un problème multi-attributs de tournées de véhicules. L’algorithme exact est basé sur la génération de colonnes impliquant un algorithme de plus court chemin élémentaire avec contraintes de ressources.
Dans la deuxième partie, nous concevons un algorithme exact pour résoudre la deuxième variante du problème. À cette fin, le problème est modélisé comme un problème de tournées de véhicules multi-périodes prenant en compte explicitement les variations potentielles du niveau de production sur un horizon donné. De nouvelles stratégies sont proposées pour résoudre le problème de plus court chemin élémentaire avec contraintes de ressources, impliquant dans ce cas une structure particulière étant donné la caractéristique multi-périodes du problème général. Pour résoudre des instances de taille réaliste dans des temps de calcul raisonnables, une approche de résolution de nature heuristique est requise. La troisième partie propose un algorithme de recherche adaptative à grands voisinages où de nombreuses nouvelles stratégies d’exploration et d’exploitation sont proposées pour améliorer la performances de l’algorithme proposé en termes de la qualité de la solution obtenue et du temps de calcul nécessaire. / Many practical problems arising in real-world applications in the field of logistics can be modeled as vehicle routing problems (VRP). In broad terms, VRPs deal with designing optimal routes for delivering goods or services to a number of geographically scattered customers in a context in which, routing costs are minimized. Depending on the type of problem, one or several depots may be present. Routing problems are among the most difficult combinatorial optimization problems.
In this dissertation we study a special combinatorial optimization problem, belonging to the class of the vehicle routing problem that is strongly linked to the context of the transportation networks. We introduce a new problem setting, which is mainly inspired by the activities of collecting milk from production farms and distributing the collected product to processing plants in Quebec. Two different variants of this problem setting are considered. The first variant seeks a tactical routing plan for the milk collection-distribution problem over a given planning horizon assuming that the production level over the considered horizon is fixed. The second variant aims to provide a more accurate plan by taking into account potential variations in terms of production level, which may occur during the course of a horizon. This thesis is cast into three main parts, as follows:
In the first part, we describe an exact algorithm for the first variant of the problem, which is characterized by the presence of time windows, multiple depots, and a heterogeneous fleet of vehicles, where the objective is to minimize the routing cost.
To this end, the problem is modeled as a multi-attribute vehicle routing problem. The exact algorithm proposed is based on the column generation approach, coupled with an elementary shortest path algorithm with resource constraints.
In the second part, we design an exact framework to address the second variant of the problem. To this end, the problem is modeled as a multi-period vehicle routing problem, which explicitly takes into account potential production level variations over a horizon. New strategies are proposed to tackle the particular structure of the multi-period elementary shortest path algorithm with resource constraints.
To solve realistic instances of the second variant of the problem in reasonable computation times, a heuristic approach is required. In the third part of this thesis, we propose an adaptive large neighborhood search, where various new exploration and exploitation strategies are proposed to improve the performance of the algorithm in terms of solution quality and computational efficiency.
|
5 |
Méthodes exactes et heuristiques pour le problème de tournées de véhicules avec fenêtres de temps et réutilisation de véhiculesAzi, Nabila 08 1900 (has links)
Cette thèse porte sur les problèmes de tournées de véhicules avec
fenêtres de temps où un gain est associé à chaque client et où l'objectif est
de maximiser la somme des gains recueillis moins les coûts de transport.
De plus, un même véhicule peut effectuer plusieurs tournées durant
l'horizon de planification. Ce problème a été relativement peu étudié en dépit de son importance en pratique. Par exemple,
dans le domaine de la livraison de denrées périssables, plusieurs tournées de courte durée doivent être combinées afin de former des journées
complètes de travail. Nous croyons que ce type de
problème aura une importance de plus en plus grande dans le futur avec l'avènement du commerce électronique, comme les épiceries
électroniques, où les clients peuvent commander des produits par internet pour la livraison à domicile.
Dans le premier chapitre de cette thèse, nous présentons d'abord une revue de la
littérature consacrée aux
problèmes de tournées de véhicules avec gains ainsi qu'aux problèmes permettant une
réutilisation des véhicules. Nous présentons les
méthodologies générales adoptées pour les résoudre, soit les méthodes exactes,
les méthodes heuristiques et les méta-heuristiques. Nous discutons enfin des problèmes de tournées
dynamiques où certaines données sur le problème ne sont pas connues à l'avance.
Dans le second chapitre, nous décrivons un algorithme
exact pour résoudre un problème de tournées avec fenêtres de temps et réutilisation de véhicules où l'objectif premier est
de maximiser le nombre de clients desservis. Pour ce faire, le problème est modélisé comme un problème de tournées avec
gains. L'algorithme exact est basé sur une méthode de génération de colonnes couplée avec un algorithme de plus court
chemin élémentaire avec contraintes de ressources.
Pour résoudre des instances de taille réaliste dans des temps de calcul raisonnables, une approche de résolution de nature heuristique est requise.
Le troisième chapitre propose donc
une méthode de recherche adaptative à grand voisinage qui exploite les différents niveaux
hiérarchiques du problème (soit les journées complètes de travail des véhicules, les routes qui composent ces journées et les clients qui composent les routes).
Dans le quatrième chapitre, qui traite du cas dynamique,
une stratégie d'acceptation et de refus des nouvelles requêtes de service est proposée, basée sur une anticipation des
requêtes à venir. L'approche repose sur la génération de scénarios pour
différentes réalisations possibles des requêtes futures. Le coût d'opportunité de servir
une nouvelle
requête est basé sur une évaluation des scénarios avec et sans cette nouvelle requête.
Enfin, le dernier chapitre résume les contributions de cette thèse et propose quelques avenues
de recherche future. / This thesis studies vehicle routing problems with time windows, where a gain is associated
with each customer and where the objective is to maximize the total gain collected minus
the routing costs. Furthermore.
the same vehicle might be assigned to different routes during the planning horizon.
This problem has received little attention in the literature in
spite of its importance in practice. For example, in the
home delivery of perishable goods (like food), routes
of short duration must be combined to form complete workdays.
We believe that this type of problem will become increasingly important
in the future with the advent of electronic services, like e-groceries, where
customers can order goods through the Internet and get these goods
delivered at home.
In the first chapter of this thesis, we present a review of vehicle routing problems
with gains, as well as vehicle routing problems with
multiple use of vehicles. We discuss the general classes of
problem-solving approaches for these problems, namely, exact methods, heuristics and metaheuristics.
We also introduce dynamic vehicle routing problems, where new information is revealed
as the routes are executed.
In the second chapter, we describe an exact algorithm for a vehicle routing problem with
time windows and multiple use of vehicles, where the first objective is to maximize the number of
served customers. To this end, the problem is modeled as a vehicle routing problem with gains.
The exact algorithm is based on column generation, coupled with an elementary shortest path algorithm
with resource constraints.
To solve realistic instances in reasonable computation times, a heuristic approach is required.
The third chapter proposes an adaptative large neighborhood search where the various hierarchical
levels of the problem are exploited (i.e., complete vehicle workdays, routes within workdays and
customers within routes).
The fourth chapter deals with the dynamic case. In this chapter, a strategy for
accepting or rejecting new customer requests is proposed. This strategy is based on the
generation of multiple scenarios for different realizations of the requests in the future.
An opportunity cost for serving a new request is then computed, based on an evaluation of the
scenarios with and without the new request.
Finally, the last chapter summarizes the contributions of this thesis and proposes future research
avenues.
|
Page generated in 0.0717 seconds