• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Construction automatique de hiérarchies sémantiques à partir du Trésor de la Langue Française informatisé (TLFi) : application à l'indexation et la recherche d'images / Automatic construction of semantic hierarchies from the Trésor de la langue française informatisé (TLFi) : application for image indexing and retrieval

Gheorghita, Inga 17 February 2014 (has links)
L’objectif principal de cette thèse est de montrer que les informations lexicales issues d’un dictionnaire de langue, tel le Trésor de la langue française informatisé (TLFi), peuvent améliorer les processus d’indexation et de recherche d’images. Le problème d’utilisation d’une telle ressource est qu’elle n’est pas suffisamment formalisée pour être exploitée d’emblée dans un tel domaine d’application. Pour résoudre ce problème, nous proposons, dans un premier temps, une approche de construction automatique de hiérarchies sémantiques à partir du TLFi. Après avoir défini une caractéristique quantitative (mesurable) et comparable des noms apparaissant dans les définitions lexicographiques, à travers une formule de pondération permettant de sélectionner le nom de poids maximal comme un bon candidat hyperonyme pour un lexème donné du TLFi, nous proposons un algorithme de construction automatique de hiérarchies sémantiques pour les lexèmes des vocables du TLFi. Une fois notre approche validée à travers des évaluations manuelles, nous montrons, dans un second temps, que les hiérarchies sémantiques obtenues à partir du TLFi peuvent être utilisées pour l’enrichissement d’un thésaurus construit manuellement ainsi que pour l’indexation automatique d’images à partir de leurs descriptions textuelles associées. Nous prouvons aussi que l’exploitation d’une telle ressource dans le domaine de recherche d’images améliore la précision de la recherche en structurant les résultats selon les domaines auxquels les concepts de la requête de recherche peuvent faire référence. La mise en place d’un prototype nous a permis ainsi d’évaluer et de valider les approches proposées. / The main purpose of this thesis is to show that the lexical information issuing from a language dictionary, as the Trésor de la langue française informatisé (TLFi), can improve the image indexing and retrieval process. The problem of using of such resource is that it is not sufficiently formalized to be exploited immediately in such application domain.To solve this problem, we propose a first approach of automatic construction of semantic hierarchies from TLFi. After defining a quantitative (measurable) and comparable characteristic of names appearing in dictionary definitions, through a weighting formula that allows us to select the name of the maximum weight as a good hypernym candidate for a given TLFi lexeme, we suggest an algorithm of automatic construction of semantic hierarchies for the lexemes of TLFi vocables.Once our approach is validated through manual evaluations, we demonstrate in the second time that the semantic hierarchies obtained from TLFi can be used to enrich a thesaurus manually built as well as for automatic image indexing using their associated text descriptions. We also prove that the use of such resource in the domain of image retrieval improves the accuracy of search by structuring the results according the domains to which the concepts of the search query are related to. The implementation of a prototype allowed us to evaluate and validate the proposed approaches.
2

Une approche de recherche d'images basée sur la sémantique et les descripteurs visuels / An Image Retrieval approach based on semantics and visual features

Allani Atig, Olfa 27 June 2017 (has links)
La recherche d’image est une thématique de recherche très active. Plusieurs approches permettant d'établir un lien entre les descripteurs de bas niveau et la sémantique ont été proposées. Parmi celles-là, nous citons la reconnaissance d'objets, les ontologies et le bouclage de pertinence. Cependant, leur limitation majeure est la haute dépendance d’une ressource externe et l'incapacité à combiner efficacement l'information visuelle et sémantique. Cette thèse propose un système basé sur un graphe de patrons, la sélection ciblée des descripteurs pour la phase en ligne et l'amélioration de la visualisation des résultats. L'idée est de (1) construire un graphe de patrons composé d'une ontologie modulaire et d'un modèle basé graphe pour l'organisation de l'information sémantique, (2) de construire un ensemble de collections de descripteurs pour guider la sélection des descripteurs à appliquer durant la recherche et (3) améliorer la visualisation des résultats en intégrant les relations sémantiques déduite du graphe de patrons.Durant la construction de graphe de patrons, les modules ontologiques associés à chaque domaine sont automatiquement construits. Le graphe de régions résume l'information visuelle en un format plus condensé et la classifie selon son domaine. Le graphe de patrons est déduit par composition de modules ontologiques. Notre système a été testé sur trois bases d’images. Les résultats obtenus montrent une amélioration au niveau du processus de recherche, une meilleure adaptation des descripteurs visuels utilisés aux domaines couverts et une meilleure visualisation des résultats qui diminue le niveau d’abstraction par rapport à leur logique de génération. / Image retrieval is a very active search area. Several image retrieval approaches that allow mapping between low-level features and high-level semantics have been proposed. Among these, one can cite object recognition, ontologies, and relevance feedback. However, their main limitation concern their high dependence on reliable external resources and lack of capacity to combine semantic and visual information.This thesis proposes a system based on a pattern graph combining semantic and visual features, relevant visual feature selection for image retrieval and improvement of results visualization. The idea is (1) build a pattern graph composed of a modular ontology and a graph-based model, (2) to build visual feature collections to guide feature selection during online retrieval phase and (3) improve the retrieval results visualization with the integration of semantic relations.During the pattern graph building, ontology modules associated to each domain are automatically built using textual corpuses and external resources. The region's graphs summarize the visual information in a condensed form and classify it given its semantics. The pattern graph is obtained using modules composition. In visual features collections building, association rules are used to deduce the best practices on visual features use for image retrieval. Finally, results visualization uses the rich information on images to improve the results presentation.Our system has been tested on three image databases. The results show an improvement in the research process, a better adaptation of the visual features to the domains and a richer visualization of the results.
3

Recherche multi-descripteurs dans les fonds photographiques numérisés / Multi-descriptor retrieval in digitalized photographs collections

Bhowmik, Neelanjan 07 November 2017 (has links)
La recherche d’images par contenu (CBIR) est une discipline de l’informatique qui vise à structurer automatiquement les collections d’images selon des critères visuels. Les fonctionnalités proposées couvrent notamment l’accès efficace aux images dans une grande base de données d’images ou l’identification de leur contenu par des outils de détection et de reconnaissance d’objets. Ils ont un impact sur une large gamme de domaines qui manipulent ce genre de données, telles que le multimedia, la culture, la sécurité, la santé, la recherche scientifique, etc.Indexer une image à partir de son contenu visuel nécessite d’abord de produire un résumé visuel de ce contenu pour un usage donné, qui sera l’index de cette image dans la collection. En matière de descripteurs d’images, la littérature est désormais trés riche: plusieurs familles de descripteurs existent, et dans chaque famille de nombreuses approches cohabitent. Bon nombre de descripteurs ne décrivant pas la même information et n’ayant pas les mêmes propriétés d’invariance, il peut être pertinent de les combiner de manière à mieux décrire le contenu de l’image. Cette combinaison peut être mise en oeuvre de différentes manières, selon les descripteurs considérés et le but recherché. Dans cette thése, nous nous concentrons sur la famille des descripteurs locaux, avec pour application la recherche d’images ou d’objets par l’exemple dans une collection d’images. Leurs bonnes propriétés les rendent très populaires pour la recherche, la reconnaissance et la catégorisation d'objets et de scènes. Deux directions de recherche sont étudiées:Combinaison de caractéristiques pour la recherche d’images par l’exemple: Le coeur de la thèse repose sur la proposition d’un modèle pour combiner des descripteurs de bas niveau et génériques afin d’obtenir un descripteur plus riche et adapté à un cas d’utilisation donné tout en conservant la généricité afin d’indexer différents types de contenus visuels. L’application considérée étant la recherche par l’exemple, une autre difficulté majeure est la complexité de la proposition, qui doit correspondre à des temps de récupération réduits, même avec de grands ensembles de données. Pour atteindre ces objectifs, nous proposons une approche basée sur la fusion d'index inversés, ce qui permet de mieux représenter le contenu tout en étant associé à une méthode d’accès efficace.Complémentarité des descripteurs: Nous nous concentrons sur l’évaluation de la complémentarité des descripteurs locaux existant en proposant des critères statistiques d’analyse de leur répartition spatiale dans l'image. Ce travail permet de mettre en évidence une synergie entre certaines de ces techniques lorsqu’elles sont jugées suffisamment complémentaires. Les critères spatiaux sont exploités dans un modèle de prédiction à base de régression linéaire, qui a l'avantage de permettre la sélection de combinaisons de descripteurs optimale pour la base considérée mais surtout pour chaque image de cette base. L'approche est évaluée avec le moteur de recherche multi-index, où il montre sa pertinence et met aussi en lumière le fait que la combinaison optimale de descripteurs peut varier d'une image à l'autre.En outre, nous exploitons les deux propositions précédentes pour traiter le problème de la recherche d'images inter-domaines, correspondant notamment à des vues multi-source et multi-date. Deux applications sont explorées dans cette thèse. La recherche d’images inter-domaines est appliquée aux collections photographiques culturelles numérisées d’un musée, où elle démontre son efficacité pour l’exploration et la valorisation de ces contenus à différents niveaux, depuis leur archivage jusqu’à leur exposition ou ex situ. Ensuite, nous explorons l’application de la localisation basée image entre domaines, où la pose d’une image est estimée à partir d’images géoréférencées, en retrouvant des images géolocalisées visuellement similaires à la requête / Content-Based Image Retrieval (CBIR) is a discipline of Computer Science which aims at automatically structuring image collections according to some visual criteria. The offered functionalities include the efficient access to images in a large database of images, or the identification of their content through object detection and recognition tools. They impact a large range of fields which manipulate this kind of data, such as multimedia, culture, security, health, scientific research, etc.To index an image from its visual content first requires producing a visual summary of this content for a given use, which will be the index of this image in the database. From now on, the literature on image descriptors is very rich; several families of descriptors exist and in each family, a lot of approaches live together. Many descriptors do not describe the same information and do not have the same properties. Therefore it is relevant to combine some of them to better describe the image content. The combination can be implemented differently according to the involved descriptors and to the application. In this thesis, we focus on the family of local descriptors, with application to image and object retrieval by example in a collection of images. Their nice properties make them very popular for retrieval, recognition and categorization of objects and scenes. Two directions of research are investigated:Feature combination applied to query-by-example image retrieval: the core of the thesis rests on the proposal of a model for combining low-level and generic descriptors in order to obtain a descriptor richer and adapted to a given use case while maintaining genericity in order to be able to index different types of visual contents. The considered application being query-by-example, another major difficulty is the complexity of the proposal, which has to meet with reduced retrieval times, even with large datasets. To meet these goals, we propose an approach based on the fusion of inverted indices, which allows to represent the content better while being associated with an efficient access method.Complementarity of the descriptors: We focus on the evaluation of the complementarity of existing local descriptors by proposing statistical criteria of analysis of their spatial distribution. This work allows highlighting a synergy between some of these techniques when judged sufficiently complementary. The spatial criteria are employed within a regression-based prediction model which has the advantage of selecting the suitable feature combinations globally for a dataset but most importantly for each image. The approach is evaluated within the fusion of inverted indices search engine, where it shows its relevance and also highlights that the optimal combination of features may vary from an image to another.Additionally, we exploit the previous two proposals to address the problem of cross-domain image retrieval, where the images are matched across different domains, including multi-source and multi-date contents. Two applications of cross-domain matching are explored. First, cross-domain image retrieval is applied to the digitized cultural photographic collections of a museum, where it demonstrates its effectiveness for the exploration and promotion of these contents at different levels from their archiving up to their exhibition in or ex-situ. Second, we explore the application of cross-domain image localization, where the pose of a landmark is estimated by retrieving visually similar geo-referenced images to the query images
4

Modélisation stochastique pour l’analyse d’images texturées : approches Bayésiennes pour la caractérisation dans le domaine des transformées

Lasmar, Nour-Eddine 07 December 2012 (has links)
Le travail présenté dans cette thèse s’inscrit dans le cadre de la modélisation d’images texturées à l’aide des représentations multi-échelles et multi-orientations. Partant des résultats d’études en neurosciences assimilant le mécanisme de la perception humaine à un schéma sélectif spatio-fréquentiel, nous proposons de caractériser les images texturées par des modèles probabilistes associés aux coefficients des sous-bandes. Nos contributions dans ce contexte concernent dans un premier temps la proposition de différents modèles probabilistes permettant de prendre en compte le caractère leptokurtique ainsi que l’éventuelle asymétrie des distributions marginales associées à un contenu texturée. Premièrement, afin de modéliser analytiquement les statistiques marginales des sous-bandes, nous introduisons le modèle Gaussien généralisé asymétrique. Deuxièmement, nous proposons deux familles de modèles multivariés afin de prendre en compte les dépendances entre coefficients des sous-bandes. La première famille regroupe les processus à invariance sphérique pour laquelle nous montrons qu’il est pertinent d’associer une distribution caractéristique de type Weibull. Concernant la seconde famille, il s’agit des lois multivariées à copules. Après détermination de la copule caractérisant la structure de la dépendance adaptée à la texture, nous proposons une extension multivariée de la distribution Gaussienne généralisée asymétrique à l’aide de la copule Gaussienne. L’ensemble des modèles proposés est comparé quantitativement en terme de qualité d’ajustement à l’aide de tests statistiques d’adéquation dans un cadre univarié et multivarié. Enfin, une dernière partie de notre étude concerne la validation expérimentale des performances de nos modèles à travers une application de recherche d’images par le contenu textural. Pour ce faire, nous dérivons des expressions analytiques de métriques probabilistes mesurant la similarité entre les modèles introduits, ce qui constitue selon nous une troisième contribution de ce travail. Finalement, une étude comparative est menée visant à confronter les modèles probabilistes proposés à ceux de l’état de l’art. / In this thesis we study the statistical modeling of textured images using multi-scale and multi-orientation representations. Based on the results of studies in neuroscience assimilating the human perception mechanism to a selective spatial frequency scheme, we propose to characterize textures by probabilistic models of subband coefficients.Our contributions in this context consist firstly in the proposition of probabilistic models taking into account the leptokurtic nature and the asymmetry of the marginal distributions associated with a textured content. First, to model analytically the marginal statistics of subbands, we introduce the asymmetric generalized Gaussian model. Second, we propose two families of multivariate models to take into account the dependencies between subbands coefficients. The first family includes the spherically invariant processes that we characterize using Weibull distribution. The second family is this of copula based multivariate models. After determination of the copula characterizing the dependence structure adapted to the texture, we propose a multivariate extension of the asymmetric generalized Gaussian distribution using Gaussian copula. All proposed models are compared quantitatively using both univariate and multivariate statistical goodness of fit tests. Finally, the last part of our study concerns the experimental validation of the performance of proposed models through texture based image retrieval. To do this, we derive closed-form metrics measuring the similarity between probabilistic models introduced, which we believe is the third contribution of this work. A comparative study is conducted to compare the proposed probabilistic models to those of the state-of-the-art.

Page generated in 0.0677 seconds