• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Oxydase de l'acide 1-aminocyclopropane carboxylique : mode d'action et inactivation

El bakkali taheri, Nadia 19 December 2011 (has links)
L’oxydase de l’acide 1-AminoCyclopropane Carboxylique (ACC Oxydase, ACCO) catalyse la formation de l’éthylène, hormone essentielle à la vie des plantes. L’ACCO catalyse l’oxydation de l’ACC en éthylène en présence de dioxygène et de deux électrons (fournis in vitro par l’ascorbate). L'activité de l'enzyme requière également, pour des raisons encore incomprises, la présence de CO2 sous la forme d'ions bicarbonates. Il s’agit d’une enzyme qui contient un ion fer(II) dans un environnement non-hémique au site actif. Etant donné l’importance de l’éthylène chez les plantes, l’ACCO, ainsi que les autres enzymes impliquées dans sa biosynthèse, ont été très étudiées durant les vingt dernières années. Cependant, peu d’études ont porté sur le rôle de l’ion métallique et le mécanisme d’action ou sur les surprenants processus d’inactivation subis par l’enzyme. L’ACCO est en effet une enzyme connue pour son instabilité. Nous avons tout d’abord entrepris une caractérisation physicochimique et biochimique de l’enzyme. Le matériel protéique utilisé a tout d’abord été analysé une coupure entre les résidus Ala 290 et Gly 291 a été observée au cours de la purification de l'enzyme. Puis, grâce à l'utilisation de techniques spectroscopiques, nous avons cherché à obtenir plus d'informations sur la fixation des substrats/cofacteurs au site actif. Enfin l’étude des mutants et des complexes modèles de l’ACCO a été réalisée afin de mieux comprendre le mécanisme catalytique et de rechercher de nouvelles activités. Nous nous sommes aussi intéressés aux mécanismes d’inactivation de l’ACCO. En présence des effecteurs en excès, cette inactivation se traduit par une fragmentation et une modification de charge. Lorsque la concentration en fer est limitée, aucune modification physique de l’enzyme inactive n’est observée et l'enzyme garde un contenu global en aminoacide et une conformation tridimensionnelle intègres. Des processus oxydatifs se déroulant directement au site actif de l’enzyme sont susceptibles d’engendrer une telle perte d’activité par l'oxydation d'un nombre limité d'acides aminés. Des études en spectrométrie de masse ont été entreprises et sont toujours en cours afin d'identifier les modifications responsables de la perte d'activité de l'enzyme.Enfin nous avons recherché d’éventuelles partenaires protéiques qui pourraient conférer à l’ACCO une meilleure stabilité. Des études préliminaires ont été entreprises et des données de microscopie suggèrent que l'ACCO est localisée près des membranes de la vacuole. / The 1-AminoCyclopropane Carboxylic acid oxidase (ACC Oxidase, ACCO) catalyzes the last step of the biosynthesis of the plant hormone, ethylene. ACCO catalyzes the oxidation of ACC into ethylene in the presence of dioxygen and two electrons (provided in vitro by ascorbate). Carbon dioxide (or bicarbonate ions) are also required for optimum activity. ACCO is an non-heme iron(II) containing enzyme. Given the importance of ethylene in plants, studies on ACCO, as well as on the other enzymes involved in its biosynthesis, have attracted much attention in the past two decades. However, few studies focus on the role of the metal ion and on the catalytic mechanism or the intriguing inactivation processes. ACCO is indeed known for its instability. We first purified and characterised the enzyme. During the purification, a cleavage between residues Ala 290 and Gly 291 was observed. Then, using spectroscopic techniques, we intended to get more information on cofactor's binding in the active site. Finally studies of mutants and model complexes of ACCO were performed in order to get a better understanding of the catalytic mechanism and to look for new activities.We were also interested in the inactivation processes of ACCO. In the presence of an excess of effectors, this inactivation resulted in fragmentation and in pI modification. When the concentration of iron is limited, no modifications of the inactive enzyme were observed. The inactive enzyme maintained its amino acid content and three-dimensional conformation. The loss of activity is therefore likely to derive from oxidative processes directly at the active site. Mass spectrometry experiments were initiated and are still under progress. Finally we were interested in identifying possible protein partners of ACCO that could provide a better stability. Preliminary studies were thus initiated and from microscopy results, ACCO was found located close to the vacuole membrane.

Page generated in 0.1232 seconds