Spelling suggestions: "subject:"recombinant microorganisms"" "subject:"ecombinant microorganisms""
1 |
Ecological assessment after the addition of genetically engineered Klebsiella planticola SDF20 into soilHolmes, Michael T. 19 June 1995 (has links)
The objectives in this research were to assess whether Klebsiella planticola
SDF20 could survive in soil and result in ecological effects to soil foodweb
organisms and plant growth. Four experiments were conducted using soil
microcosms. Klebsiella planticola SDF20 has been genetically engineered to
produce ethanol from agricultural waste for use in alternative fuels.
Theoretically, after ethanol is removed from fermentors, the remaining residue
that includes SDF20 would be spread onto crop fields as organic amendments.
The parent strain SDF15 and genetically engineered strain SDF20 were added
to sandy and clay soils with varying organic matter content. Alterations to soil
foodweb organisms and plant growth were assessed using direct methods.
These alterations were considered to be ecological effects if changes in nutrient
cycling processes and plant growth would result. Ethanol produced by SDF20
was detected in the headspace of microcosms that demonstrated that SDF20
can survive and express its novel function in high organic matter clay soil. Soil
containing higher organic matter and higher clay content may have increased
the survival of SDF20 due to less competition with indigenous microbiota for
substrates and protection from bacterial predators in clay soil with smaller pore
sizes, thereby allowing SDF20 to produce a detectable concentration of ethanol.
Significant changes to soil foodweb organisms were not detected using this soil
type. However, significant increases in soil nematodes and significant
decreases in vescular-arbuscular mycorrhizal colonization of plant roots were
detected after the addition of SDF20 to low organic matter clay, low organic
matter sandy and high organic matter sandy soils. Significant changes in soil
foodweb organisms associated with SDF20 occurred only when living plant roots
were present. This indicated the importance of having biotic interactions in test
systems to elucidate ecological effects. The effects associated with SDF20
varied with the chemical, physical and biological properties of soils and indicated
the importance of assessing the release of genetically engineered
microorganisms on a case by case basis. / Graduation date: 1996
|
2 |
Initial investigation on xylose fermentation for lignocellulosic bioethanol productionChen, Yanli. Wang, Jin, January 2009 (has links)
Thesis--Auburn University, 2009. / Abstract. Vita. Includes bibliographic references (p.64-77).
|
3 |
Development of recombinant Saccharomyces cerevisiae for improved D-xylose utilisationDe Villiers, Gillian K. 04 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2006. / ENGLISH ABSTRACT: Plant biomass is potentially an inexhaustible source of bioenergy. To be more useful in an
industrialised context, conversion to liquid biofuel is necessary, which could provide the
motor vehicle market with energy. To enable fermentation of both hexose and pentose
sugars present in plant biomass, many researchers have introduced eukaryotic D-xylose
utilisation metabolic pathways into S. cerevisiae as these yeasts cannot utilise D-xylose.
The aim of this study was to increase D-xylose utilisation and lower the xylitol production
found with the eukaryotic pathway, thus redirecting carbon to the increased production of
ethanol.
In order to reduce xylitol yield a two-fold approach was followed. Firstly S. cerevisiae
transformed with eukaryotic XR and XDH genes were subjected to random mutagenesis
and selection for improved D-xylose utilisation. Unfortunately no mutant superior to the
parental strain with respect to D-xylose utilisation, lowered xylitol production and improved
ethanol production was obtained.
Subsequently a bacterial xylose isomerase (XI) gene was introduced into S. cerevisiae.
Bacterial xylose isomerase converts D-xylose to xylulose in a single step, while eukaryotic
pathways produce the intermediate xylitol. The chosen gene encodes for a putative xylose
isomerase gene (xylA) from the bacterium Bacteroides thetaiotaomicron, which has not
previously been transformed into yeast. When the native xylA was expressed in E. coli
and S. cerevisiae no XI activity was found, nor growth on D-xylose sustained. Lack of
activity was surmised to be due to an amino acid modification, or possibly due to a vastly
different codon bias in yeast compared to the Bacteroides strain. Northern analysis
revealed that no D-xylose transcript was formed. A synthetic D-xylose isomerase gene
(SXI) based on the B. thetaiotaomicron XI amino acid sequence, but optimised for
S. cerevisiae codon bias, was designed and manufactured. S. cerevisiae transformed with
the synthetic gene showed sustained, non-pseudohyphal growth on D-xylose as sole
carbon source, both on solid and liquid medium. This ability to utilise D-xylose represents
a significant step for recombinant S. cerevisiae to potentially ferment D-xylose for
bioethanol. / AFRIKAANSE OPSOMMING: Plant biomassa is potensieel ‘n onuitputlike bron van bio-energie. Om in die huidige
industriële konteks van groter nut te wees, en die motor-industrie met energie te voorsien,
is omskakeling na ‘n vloeistof-energievorm nodig. Om die fermentasie van beide
heksoses en pentoses teenwoordig in plantbiomassa te bewerkstellig, het verskillende
navorsingspanne eukariotiese D-xilose-afbraak metabolise weë na S. cerevisiae oorgedra
om dié gis die vermoë te gee om D-xilose af te breek. Die doel van hierdie studie was om
D-xilose-verbruik in geneties gemodifiseerde S. cerevisiae te verhoog en die hoeveelheid
xilitol wat met die eukariotiese sisteem verkry word, te verminder om ‘n hoë etanol
opbrengs te handhaaf.
Twee moontlikhede is ondersoek om die xilitol opbrengs te verminder. Eerstens is ‘n
rekombinante S. cerevisiae met die xilose reduktase (XR) en xilitol dehidrogenase (XDH)
gene aan nie-spesifieke mutagenese onderwerp en vir verbeterde D-xilose verbruik
geselekteer. Ongelukkig kon geen mutante wat beter as die oorspronklike ras D-xilose
kon gebruik, en etanol produseer met relatief min xilitol opbrengs, gevind word nie.
Daarna is ‘n bakteriese D-xilose-afbraak geen na S. cerevisiae oorgedra. Bakteriese
xilose isomerases skakel D-xilose om na xilulose in ‘n enkele stap, terwyl die eukariotiese
paaie die tussenganger xilitol produseer. Die gekose xylA geen wat vir xilose isomerase
(XI) van die bakterium Bacteriodes thetaotaomicron kodeer, is vir die eerste keer in gis
getransformeer. Toe die natuurlike xylA geen In E. coli en S. cerevisiae uitgedruk is, is
geen XI-aktiwiteit of volhoubare groei op D-xilose waargeneem nie. Die tekort aan
aktiwiteit is aan 'n aminosuurverandering, of aan die groot verskil tussen kodonkeuse
(“codon bias”) in gis teenoor die Bacteroides ras toegeskryf. Noordkladanaliese het
bepaal dat geen mRNA spesifiek tot die XI-geen geproduseer is nie. Die xilose isomerase
geen van B. thetaiomicron is toe sinteties ontwerp, met die DNA-volgorde vir die
S. cerevisiae kodonkeuse geoptimiseer. S. cerevisiae wat met die sintetiese geen (SXI)
getransformeer is, het aanhoudende, nie-pseudohife groei op D-xilose as enigste
koolstofbron op beide soliede en in vloeibare medium getoon. Die vermoë om D-xilose te
verbruik verteenwoordig ‘n betekenisvolle stap tot die fermentasie van D-xilose na etanol
met geneties gemodifiseerde S. cerevisiae.
|
4 |
Soil microcosms as environmental research tools for the study of microorganism gene transfer in soil environments /Hynes, Samielle, January 1900 (has links)
Thesis (M.Sc.) - Carleton University, 2003. / Includes bibliographical references (p. 108-126). Also available in electronic format on the Internet.
|
5 |
Construction of recombinant Saccharomyces cerevisiae strains for starch utilisationEksteen, Jeremy Michael 12 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2002. / ENGLISH ABSTRACT: Starch-containing agricultural crops are widely available as feedstocks for the production
of fuel ethanol, potable spirits or beer, single-cell protein (animal feed) and high-fructose
corn syrups (sweeteners). Starch-rich crops, such as maize, rye, barley and wheat, are
usually used for the production of whisky. One of the first steps in the production of whisky
is to boil the raw starch at temperatures exceeding 100°C. This gelatinisation step is
performed to disrupt and solubilise the starch granules to make them more accessible for
enzymatic hydrolysis. After this cooking process, the starch is liquefied by a-amylase and
then saccharified by glucoamylase and a debranching enzyme.
Lipomyces kononenkoae and Saccharomycopsis fibuligera secrete highly effective
a-amylases and glucoamylases, making them two of the most efficient raw-starchdegrading
yeasts known. However, L. kononenkoae and S. fibuligera cannot be used in
existing industrial fermentations because of their low ethanol tolerance, slow growth rate,
catabolite repression, poorly characterised genetics and lack of GRAS (Generally
Regarded As Safe) status.
This study is divided into two sections. The aim of the first section was to clone a gene
(LKA2) encoding a novel starch-degrading enzyme, a second a-amylase (Lka2p) from
L. kononenkoae. LKA2 was cloned into a multicopy plasmid, the yeast episomal plasmid,
YEp352, under the control of the phosphoglycerate kinase promoter (PGK1 p) and
terminator (PGKh) expression cassette. This recombinant plasmid was designated
pJUL3 and transformed into a laboratory strain of S. cerevisiae, I1278b. Plate and liquid
assays revealed that the recombinant yeast secreted active a-amylase into the medium.
The optimum pH for Lka2p was pH 3.5 and the optimum temperature 60°C.
The aim of the second part of the study was to construct recombinant strains of
S. cerevisiae secreting a-amylase and/or glucoamylase. The individual genes were cloned
into a yeast-integrating plasmid, Ylp5, under the control of the PGK1p-PGK1.,-expression
cassette. Two indigenous yeasts were selected on the basis of their ability to utilise raw
starch, L. kononenkoae and S. fibuligera, as gene donors. Eight constructs containing the
L. kononenkoae a-amylase genes, LKA 1 and LKA2, and the S. fibuligera a-amylase
(SFA 1) and glucoamylase (SFG1) genes were prepared: four single-cassette plasmids
expressing the individual coding sequences under the control of the PGK1 p-PGK1.,-
expression cassette, resulting in plPLKA 1, pIPLKA2, plPSFA 1 and pIPSFG1, respectively;
two double-cassette plasm ids (expressing both LKA 1 and LKA2 under the control of the
PGK1p-PGK1 .,-expression cassette, and SFA 1 and SFG1 under their respective native
promoters and terminators), resulting in pIPLKA1/2 and pIPSFAG, respectively, and two
single-cassette plasmids expressing SFA 1 and SFG1 with their native promoters and terminators, resulting in pSFA 1 and pSFG1, respectively. The respective constructs were
transformed into a laboratory strain of S. cere visiae , L1278b. By homologous
recombination, each plasmid was integrated into the yeast genome at the ura3 locus.
S. cerevisiae L:1278b that had been transformed with plPLKA 1/2, LKA 1 and LKA2 under
the control of the PGK1 rrPGK1,expression cassette resulted in the highest levels of
a-amylase activity when assayed for amylolytic activity in a liquid medium. This
recombinant strain resulted in the most efficient starch utilisation in batch fermentations,
consuming 80% of starch and producing 6 gIL of ethanol after 156 hours of fermentation.
The strain expressing SFG1 under the control of the PGK1rrPGK1,expression cassette
gave the highest levels of glucoamylase activity.' These results confirmed that
co-expression of a-amylase and/or glucoamylase synergistically enhance starch
degradation.
This study paves the way for the development of efficient starch-degrading strains of
S. cerevisiae for the production of whisky, beer and biofuel ethanol. / AFRIKAANSE OPSOMMING: Styselbevattende landbougewasse kom wydverspreid voor as die substraat vir die
produksie van brandstofetanol, drinkbare spiritualië of bier, enkelselproteïen en hoëfruktose
graanstroop. Styselbevattende gewasse, soos mielies, rog, gars en koring, word
gewoonlik vir die produksie van whisky gebruik. Die eerste stap in die produksie van
whisky is om die stysel by temperature bo 1DOOG te kook. Hierdie jelatinisasie stap word
uitgevoer om die styselkorrels te versteur en vloeibaar te maak sodat hulle meer toeganklik
vir ensimatiese hidrolise is. Na dié kookproses word die stysel deur o-arnilases vervloei en
dan deur glukoamilases en 'n vertakkingsensiem versuiker.
Lipomyces kononenkoae en Saccharomycopsis filuligera skei hoogs effektiewe a-amilases
en glukoamilases uit, wat dit twee van die effektiefste rou-stysel-afbrekende giste bekend,
maak. L. kononenkoae en S. fibuligera kan egter nie in reeds bestaande industriële
fermentasies gebruik word nie, as gevolg van hulle lae etanoltoleransie, stadige
groeitempo, katabolietonderdrukking, swak gekarakteriseerde genetika en gebrek aan
ABAV (Algemeen Beskou As Veilig) status.
Hierdie tesis is in twee afdelings verdeel. Die doel van die eerste deel was om 'n geen
(LKA2) wat vir 'n nuwe, unieke styselafbrekende ensiem kodeer, te kloneer, 'n tweede
a-amilase (Lka2p) van L. kononenkoae. LKA2 is in 'n multikopie plasmied, die gis
episomale plasmied, YEp352, onder beheer van die fosfogliseraatkinasepromotor- en
termineerder-kasset (PGK1 p-PGK1 r), gekloneer. Hierdie rekornbinante plasmied is pJUL3
genoem en in 'n laboratoriumras van Saccharomyces cerevisiae, L:1278b, getransformeer.
Plaat- en vloeibare-ensiem toetse het getoon dat die rekombinante gis aktiewe a-amilase
in die medium uitskei. Die optimum pH vir Lka2p is 3.5, is en die optimum temperatuur
60oG.
Die doel van die tweede deel van die studie was om rekombinante rasse van S. cerevisiae
te konstrueer wat a-amilases en/of glukoamilases uitskei. Die individuele gene is toe in 'n
gis-integreringsplasmied, Ylp5, onder beheer van die PGK1p-PGK1,ekspressiekasset,
gekloneer. Twee inheemse giste is op grond van hulle vermoë om stysel te benut
geselekteer, L. kononenkoae en S. filuIigera, as geen donors. Agt konstrukte bevattende
die L. kononenkoae se a-amilasegene, LKA 1 en LKA2, en S. filuligera se a-amilasegeen
(SFA 1) en glukoamilasegeen (SFG1), moes gekonstrueer word: vier _enkel-kasset
plasmiede wat die individuele koderende sekwense onder beheer van die PGK1 p-PGK1,
ekspressiekasset uitdruk, wat onderskeidelik plPLKA 1, pIPLKA2, plPSFA 1 en plPSFG1
lewer; twee dubbel-kasset plasmiede (wat beide LKA 1 en LKA2 onder beheer van die
PGK1 p-PGK1,ekspressiekasset, en SFA 1 en SFG1 met hulle onderskeie inheemse promotors en termineerders) uitdruk, wat onderskeidelik pIPLKA1/2 en plPSFAG lewer, en
twee enkel-kasset plasmiede wat SFA 1 and SFG1 met hulonderskeie inheemse
promotors en termineerders, en wat onderskeidelik pSFA 1 en pSFG1 lewer. Die
onderskeie konstrukte is in 'n laboratoriumras van S. cerevisiae, L1278b, getransformeer.
Deur middel van homoloë rekombinasie, is die onderskeie plasmiede in die ura3-lokus van
die gisgenoom geïntegreer. S. cerevisiae L1278b, getransformeer met plPLKA 1/2, LKA 1
en LKA2 onder die beheer van die PGK1 ~PGK1 ïekspressiekasset, het die hoogste
vlakke van a-amilase aktiwiteit gelewer toe dit vir amilolitiese aktiwiteit in vloeibare medium
getoets is. Hierdie rekombinante ras het stysel die effektiefste benut, nl. 80% van die
stysel en 'n opbrengs van 6 gIL etanol na 156 ure in lotfermentasies. Die ras wat SFG1
onder beheer van die PGK1~PGK1ïekspressiekasset uitdruk, het die hoogste vlakke van
glukoamilase-aktiwiteit gelewer. Hierdie resultate bevestig dat die gesamentlike
uitdrukking van a-amilase- en/of glukoamilase-ensieme styselafbreking sinergisties
. bevorder.
Hierdie studie baan die weg vir die ontwikkeling van 'n effektiewe styselfermenterende ras
van S. cerevisiae wat moontlik gebruik kan word vir die produksie van whisky en
biobrandstofalkohol.
|
6 |
Enhancing xylose utilisation during fermentation by engineering recombinant Saccharomyces cerevisiae strainsThanvanthri Gururajan, Vasudevan 12 1900 (has links)
Dissertation (DPhil)--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: Xylose is the second most abundant sugar present in plant biomass. Plant biomass is
the only potential renewable and sustainable source of energy available to mankind at
present, especially in the production of transportation fuels. Transportation fuels such as
gasoline can be blended with or completely replaced by ethanol produced exclusively
from plant biomass, known as bio-ethanol. Bio-ethanol has the potential to reduce
carbon emissions and also the dependence on foreign oil (mostly from the Middle East
and Africa) for many countries.
Bio-ethanol can be produced from both starch and cellulose present in plants,
even though cellulosic ethanol has been suggested to be the more feasible option.
Lignocellulose can be broken down to cellulose and hemicellulose by the hydrolytic
action of acids or enzymes, which can, in turn, be broken down to monosaccharides
such as hexoses and pentoses. These simple sugars can then be fermented to ethanol
by microorganisms. Among the innumerable microorganisms present in nature, the
yeast Saccharomyces cerevisiae is the most efficient ethanol producer on an industrial
scale. Its unique ability to efficiently synthesise and tolerate alcohol has made it the
‘workhorse’ of the alcohol industry.
Although S. cerevisiae has arguably a relatively wide substrate utilisation range,
it cannot assimilate pentose sugars such as xylose and arabinose. Since xylose
constitutes at least one-third of the sugars present in lignocellulose, the ethanol yield
from fermentation using S. cerevisiae would be inefficient due to the non-utilisation of
this sugar. Thus, several attempts towards xylose fermentation by S. cerevisiae have
been made. Through molecular cloning methods, xylose pathway genes from the
natural xylose-utilising yeast Pichia stipitis and an anaerobic fungus, Piromyces, have
been cloned and expressed separately in various S. cerevisiae strains. However,
recombinant S. cerevisiae strains expressing P. stipitis genes encoding xylose
reductase (XYL1) and xylitol dehydrogenase (XYL2) had poor growth on xylose and
fermented this pentose sugar to xylitol.
The main focus of this study was to improve xylose utilisation by a recombinant
S. cerevisiae expressing the P. stipitis XYL1 and XYL2 genes under anaerobic
fermentation conditions. This has been approached at three different levels: (i) by
creating constitutive carbon catabolite repression mutants in the recombinant
S. cerevisiae background so that a glucose-like environment is mimicked for the yeast
cells during xylose fermentation; (ii) by isolating and cloning a novel xylose reductase
gene from the natural xylose-degrading fungus Neurospora crassa through functional
complementation in S. cerevisiae; and (iii) by random mutagenesis of a recombinant
XYL1 and XYL2 expressing S. cerevisiae strain to create haploid xylose-fermenting
mutant that showed an altered product profile after anaerobic xylose fermentation. From
the data obtained, it has been shown that it is possible to improve the anaerobic xylose utilisation of recombinant S. cerevisiae to varying degrees using the strategies followed,
although ethanol formation appears to be a highly regulated process in the cell.
In summary, this work exposits three different methods of improving xylose
utilisation under anaerobic conditions through manipulations at the molecular level and
metabolic level. The novel S. cerevisiae strains developed and described in this study
show improved xylose utilisation. These strains, in turn, could be developed further to
encompass other polysaccharide degradation properties to be used in the so-called
consolidated bioprocess. / AFRIKAANSE OPSOMMING: Xilose is die tweede volopste suiker wat in plantbiomassa teenwoordig is.
Plantbiomassa is die enigste potensiële hernubare en volhoubare bron van energie wat
tans vir die mensdom beskikbaar is, veral vir die produksie van vervoerbrandstowwe.
Vervoerbrandstowwe soos petrol kan vermeng word met etanol wat uitsluitlik van
plantbiomassa vervaardig is, bekend as bio-etanol, of heeltemal daardeur vervang
word. Bio-etanol het die potensiaal om koolstofuitlatings te verminder en vir baie lande
ook afhanklikheid op buitelandse olie (hoofsaaklik afkomstig van die Midde-Ooste en
Afrika) te verminder.
Bio-etanol kan vanaf beide die stysel en sellulose in plante vervaardig word,
maar sellulosiese etanol word as die meer praktiese opsie beskou. Lignosellulose kan
deur die hidrolitiese aksie van sure of ensieme in sellulose en hemisellulose afgebreek
word en dit kan op hulle beurt weer in monosakkariede soos heksoses en pentoses
afgebreek word. Hierdie eenvoudige suikers kan dan deur mikro-organismes tot etanol
gegis word. Onder die tallose mikro-organismes wat in die natuur teenwoordig is, is die
gis Saccharomyces cerevisiae die doeltreffendste etanolprodusent in die bedryf. Sy
unieke vermoë om alkohol te vervaardig en te weerstaan het dit die werksperd van die
alkoholbedryf gemaak.
Hoewel S. cerevisiae ‘n taamlike breë spektrum van substrate kan benut, kan dit
nie pentosesuikers soos xilose en arabinose assimileer nie. Aangesien xilose ten
minste ‘n derde van die suikers wat in lignosellulose teenwoordig is, uitmaak, sou die
etanolopbrengs uit gisting met S. cerevisiae onvoldoende wees omdat hierdie suiker nie
benut word nie. Verskeie pogings is dus aangewend om xilosegisting deur S. cerevisiae
te bewerkstellig. Deur middel van molekulêre kloneringsmetodes is gene van die xiloseweg
uit ‘n gis wat xilose natuurlik benut, Pichia stipitis, en ‘n anaërobiese swam,
Piromyces, afsonderlik in S. cerevisiae-rasse gekloneer en uitgedruk. ‘n Rekombinante
ras wat P. stipitis- se XYL1-xilosereduktase- en XYL2-xilitoldehidrogenase gene uitdruk,
het egter swak groei op xilose getoon en het dié pentosesuiker tot xilitol gegis.
Die hooffokus van hierdie ondersoek was om die benutting van xilose deur ‘n
rekombinante S. cerevisiae-ras wat P. stipitis se XYL1 en XYL2-gene uitdruk onder
anaërobiese gistingstoestande te verbeter. Dit is op drie verskillende vlakke benader:
(i) deur konstitutiewe koolstofkataboliet-onderdrukkende mutante in die rekombinante
S. cerevisiae-agtergrond te skep sodat ‘n glukose-agtige omgewing tydens xilosegisting
vir die gisselle nageboots word; (ii) deur ‘n nuwe xilose-reduktasegeen uit die natuurlike
xilose-afbrekende swam Neurospora crassa te isoleer en deur funksionele
komplementasie in S. cerevisiae te kloneer; en (iii) deur willekeurige mutagenese van
die rekombinante S. cerevisiae-ras ‘n haploïede xilose-gistende mutant te skep wat ‘n
gewysigde produkprofiel ná anaërobiese xilosegisting vertoon. Deur hierdie drieledige
benadering te volg, is dit bewys dat dit moontlik is om die anaërobiese xilosebenutting
van rekombinante S. cerevisiae-rasse in wisselende mate deur die aangepaste metodes te verbeter, hoewel etanolvorming ‘n hoogs gereguleerde proses in die sel blyk
te wees.
Opsommend kan gesê word dat hierdie werk drie verskillende metodes uiteensit om
xilosebenutting onder anaërobiese toestande te verbeter deur manipulasies op die
molekulêre en metaboliese vlak. Die nuwe S. cerevisiae-rasse wat in hierdie studie
ontwikkel en beskryf word, toon verbeterde xilosebenutting. Hierdie rasse kan op hulle
beurt verder ontwikkel word om ander polisakkariedafbrekende eienskappe in te sluit
wat in die sogenaamde gekonsolideerde bioproses gebruik kan word.
|
7 |
Promotor engineering in Saccharomyces cerevisiae for transcriptional control under different physiological conditionsConradie, E. C. (Elizabeth Cornelia) 10 1900 (has links)
Dissertation (PhD)--University of Stellenbosch, 2005. / ENGLISH ABSTRACT: To manipulate recombinant microorganisms for industrial processes, controllable genetic
systems are needed that can coordinate expression of recombinant metabolic pathways. All
components are sensitive to change and thus putative targets for modification and genetic
elements and regulatory systems need to be understood and determined. Central in gene
regulation is the transcription activators that mediate gene transcription mechanisms by
binding to promoters in response to environmental signals. Promoter engineering entails the
modification of transcription factors and their target promoters.
In this study, a metabolic control system in Saccharomyces cerevisiae was constructed that
would allow induction in response to physiological environment, specifically hypoxia and
low temperature conditions. Two approaches were undertaken to find such a system. Firstly,
a bi-directional reporter gene cloning vector was designed to search for novel hypoxiainducible
promoters. Secondly, a transcription regulatory circuit was built, consisting of an
inducible transcription regulator and promoter with a reporter gene through which it mediates
transcription. Advantage was taken of the modular nature of proteins and functional domains
originating from different transcriptional proteins were combined.
A search for promoter elements sensitive to hypoxia from a S. cerevisiae genomic DNA
(gDNA) library, using a bi-directional cloning vector, did not yield highly inducible
promoters. It was concluded that a multitude of signals overlap, rendering genetic induction
difficult to control. A synthetic regulatory system would minimize the impact of these
multiple interactions. Such a genetic circuit was constructed, consisting of a chimeric
transcription activator and a target fusion promoter. The chimeric transcription activator
consisted of the GAL4 DNA binding domain, ADR1 TADIII transactivation domain and three
domains of the MGA2 regulatory protein. The functional domains of Mga2p responsible for
unregulated expression (at high basal levels) under both aerobic and hypoxia conditions were
located, as well as a further upregulation under low temperature, and were mapped to the Nterminal
and mid-Mga2p regions. A target fusion promoter consisting of a partial GAL10/1 promoter sequence and a
Trichoderma reesei core xyn2 promoter were constructed as target for this chimeric
transactivator. This synthetic promoter was fused to the T. reesei xyn2 open reading frame
encoding for a readily assayable β-xylanase activity. Both the chimeric transactivator and
fusion promoter-reporter gene cassettes were expressed from the same episomal plasmid,
named pAR.
Transformed into S. cerevisiae Y294, this regulatory system induced transcription under
aerobic and hypoxia conditions. Furthermore, the reporter gene expression was upregulated
by the chimeric transactivator at low temperatures. The chimeric transactivator mediated a
seven-fold induction of the reporter gene under aerobic conditions in S. cerevisiae Y294
when transformed with plasmid AR. A two- to three-fold induction at 23ºC was reported
under anaerobic conditions, relative to a reference strain expressing a transcription activator
without the Mga2p domains. At 30ºC, a two- to three-fold induction under aerobic conditions
and similar induction under oxygen-limited conditions were observed.
Replacing the reporter gene with your favorite gene (for example a recombinant enzyme) and
incorporating such a pAR system into a recombinant yeast should induce expression of the
chosen gene under low temperatures, both aerobic and anaerobically (thus creating a
controllable system). The system also has wider application in identifying other transcription
factors’ signal-sensitive domains. The design of this system provides the ability to add a
linker to a transactivator and to either create specific signal sensitivity or relieve the regulator
of its signal dependence. It creates an easy system for assessing other transactivators and
their domains with unknown functions and thus provides a ”workhorse and prospector in
one”. / AFRIKAANSE OPSOMMING: Vir die manipulering van rekombinante mikroörganismes vir industriële prosesse word
beheerbare genetiese stelsels benodig om gekoördineerde uitdrukking van rekombinante
metaboliese weë teweeg te bring. Alle komponente van sulke stelsels is sensitief vir
verandering en genetiese elemente en reguleerbare sisteme moet dus deeglik verstaan of
bepaal word. Sentraal tot geenregulering is die transkripsie-aktiveerders wat geentranskripsie
beheer deur aan promoters te bind in reaksie op eksterne omgewingsfaktore. Promotoringenieurswese
behels wysigings van transkripsiefaktore en hul teikenpromotors.
In hierdie studie is 'n genetiese beheerstelsel vir Saccaromyces cerevisiae ontwikkel wat
induksie in reaksie tot spesifieke fisiologiese omgewingreaksies, naamlik hipoksie- en lae
temperatuur, toelaat. Twee benaderings is gevolg: eerstens is ‘n tweerigting verklikker-geen
vektor ontwikkel en gebruik om vir unieke induseerbare hipoksie-promoters te soek.
Tweedens is ‘n transkripsie reguleringstelsel gebou wat uit ‘n induseerbare transkripsiereguleerder
and promotor met ‘n verklikkergeen bestaan, waardeur transkripsie bemiddel kan
word. Hierdie benadering benut die modulêre onderbou van proteïene en funksionele
domeine afkomstig vanaf verskillende transkripsiefaktore is gekombineer.
'n Soektog na hipoksie-sensitiewe promotors vanuit 'n Saccharomyces cerevisiae-genoom-
DNA (gDNA), deur van ‘n tweerigting verklikker-vektor gebruik te maak, het ongelukkig nie
hoogs-induseerbare promotors opgelewer nie. Die gevolgtrekking was dat ‘n veelvoud van
seine met mekaar oorvleuel en die beheer van genetiese induksie dus bemoeilik. Die
ontwikkeling van ‘n sintetiese regulering-sisteem kan die impak van die veelvuldige
interaksies verminder. Vir dié doel is ‘n sintetiese reguleringstelsel ontwerp, bestaande uit ‘n
chimeriese transkripsie-aktiveerder met ‘n teiken fusie-promotor. Die chimeriese
transaktiveerder bestaan uit die GAL4 DNA bindingsdomein, die ADR1 TAD III
transaktiveringsdomein en drie domeine van die Mga2 reguleringsproteïen. In die studie is
die funksionele domeins van Mga2p betrokke by lae temperatuur-respons en ongereguleerde uitdrukking (teen hoë basale vlakke) onder beide aërobiese en anaërobiese toestande
aangedui en is tot die N-terminaal en middel-Mga2p areas gekarteer.
‘n Teiken-fusie-promoter, bestaande uit 'n gedeeltelike GAL1/10 DNA promotoropeenvolging
en ‘n Trichoderma reesei kern xyn2-promoter, is as teiken vir hierdie
chimeriese transaktiveerder saamgestel. Hierdie sintetiese promotor is aan die T. reesei xyn2
oopleesraam, wat vir ‘n maklik meetbare β-xylanase aktiwiteit kodeer, gekoppel. Beide die
chimeriese transaktiveerder and fusie-promoter-verklikker-geenkaset word vanaf dieselfde
episomale plasmied, bekend as pAR, uitgedruk.
Hierdie reguleringsisteem induseer transkripsie onder aërobiese en hipoksie toestande in
S. cerevisiae Y294. Verder word die verklikkergeen se uitdrukking deur die chimeriese
transaktiveerder by lae temperature verhoog. Die chimeriese transaktiveerder induseer ‘n
sewe-voudige induksie van die verklikkergeen onder aërobiese toestande by 23ºC vanaf die
pAR-stelsel in S. cerevisiae Y294. ‘n Twee- tot drie-voudige induksie teen 23ºC is onder
hipoksie toestande gevind, relatief tot induksievlakke van ‘n verwysingstam met ‘n
transaktiveerder sonder die Mga2 domeine. By 30ºC is ‘n twee- tot drie-voudige induksie
onder aërobiese en lae suurstofvlakke waargeneem.
Deur die verklikker geen met ‘n jou-gunsteling-geen te vervang (bv. ‘n rekombinante
ensiem) en so 'n pAR-sisteem in ‘n rekombinante gis te inkorporeer, word uitdrukking onder
lae temperature onder beide aërobiese- en anaërobiese toestande geïnduseer (en sodoende
word ‘n reguleerbare sisteem geskep). Die sisteem het wyer toepassing om sein-sensitiewe
domeine van ander transkripsiefaktore te identifiseer. Die ontwerp van die stelsel maak dit
moontlik om 'n skakel tot die transaktiveerder by te voeg wat óf sensitiwiteit tot 'n spesifieke
sein skep, óf die reguleerder vanaf seinafhanklikheid verlos. So word ‘n bruikbare stelsel vir
die bestudering van ander transaktivators en hul domeine met onbekende funksie geskep – ‘n
“werksesel en prospekteerder in een”.
|
Page generated in 0.0698 seconds