Spelling suggestions: "subject:"reconnaissance d’activités"" "subject:"meconnaissance d’activités""
1 |
Comportements d'agents en mouvement : une approche cognitive pour la reconnaissance d'intentions / Moving agents behaviours : a cognitive approach for intention recognitionVidal, Nicolas 28 September 2014 (has links)
Dans un contexte applicatif de surveillance de zone maritime, nous voulons fournir à un opérateur humain des informations sémantiquement riches et dynamiques relatives aux comportements des entités sous surveillance. Réussir à relier les mesures brutes en provenance d’un système de capteurs aux descriptions abstraites de ces comportements est un problème difficile. Ce dernier est d’ailleurs en général traité en deux temps: tout d’abord, réaliser un prétraitement sur les données hétérogènes, multidimensionnelles et imprécises pour les transformer en un flux d’évènements symbolique, puis utiliser des techniques de reconnaissance de plans sur ces mêmes évènements. Ceci permet de décrire des étapes de plans symboliques de haut niveau sans avoir à se soucier des spécificités des capteurs bas niveau. Cependant, cette première étape est destructrice d’information et de ce fait génère une ambigüité supplémentaire dans le processus de reconnaissance. De plus, séparer les tâches de reconnaissance de comportements est générateur de calculs redondants et rend l’écriture de la bibliothèque de plans plus ardue. Ainsi, nous proposons d’aborder cette problématique sans séparer en deux le processus de reconnaissance. Pour y parvenir, nous proposons un nouveau modèle hiérarchique, inspiré de la théorie des langages formels, nous permettant de construire un pont au-dessus du fossé sémantique séparant les mesures des capteurs des intentions des entités. Grâce à l’aide d’un ensemble d’algorithmes manipulant ce modèle, nous sommes capables, à partir d’observations, de déduire les plausibles futures évolutions de la zone sous surveillance, tout en les justifiant des explications nécessaires. / In a maritime area supervision context, we seek providing a human operator with dynamic information on the behaviors of the monitored entities. Linking raw measurements, coming from sensors, with the abstract descriptions of those behaviors is a tough challenge. This problem is usually addressed with a two-stepped treatment: filtering the multidimensional, heterogeneous and imprecise measurements into symbolic events and then using efficient plan recognition techniques on those events. This allows, among other things, the possibility of describing high level symbolic plan steps without being overwhelmed by low level sensor specificities. However, the first step is information destructive and generates additional ambiguity in the recognition process. Furthermore, splitting the behavior recognition task leads to unnecessary computations and makes the building of the plan library tougher. Thus, we propose to tackle this problem without dividing the solution into two processes. We present a hierarchical model, inspired by the formal language theory, allowing us to describe behaviors in a continuous way, and build a bridge over the semantic gap between measurements and intents. Thanks to a set of algorithms using this model, we are able, from observations, to deduce the possible future developments of the monitored area while providing the appropriate explanations.
|
2 |
Reconnaissance perceptuelle des objets d’Intérêt : application à l’interprétation des activités instrumentales de la vie quotidienne pour les études de démence / Perceptual object of interest recognition : application to the interpretation of instrumental activities of daily living for dementia studiesBuso, Vincent 30 November 2015 (has links)
Cette thèse est motivée par le diagnostic, l’évaluation, la maintenance et la promotion de l’indépendance des personnes souffrant de maladies démentielles pour leurs activités de la vie quotidienne. Dans ce contexte nous nous intéressons à la reconnaissance automatique des activités de la vie quotidienne.L’analyse des vidéos de type égocentriques (où la caméra est posée sur une personne) a récemment gagné beaucoup d’intérêt en faveur de cette tâche. En effet de récentes études démontrent l’importance cruciale de la reconnaissance des objets actifs (manipulés ou observés par le patient) pour la reconnaissance d’activités et les vidéos égocentriques présentent l’avantage d’avoir une forte différenciation entre les objets actifs et passifs (associés à l’arrière plan). Une des approches récentes envers la reconnaissance des éléments actifs dans une scène est l’incorporation de la saillance visuelle dans les algorithmes de reconnaissance d’objets. Modéliser le processus sélectif du système visuel humain représente un moyen efficace de focaliser l’analyse d’une scène vers les endroits considérés d’intérêts ou saillants,qui, dans les vidéos égocentriques, correspondent fortement aux emplacements des objets d’intérêt. L’objectif de cette thèse est de permettre au systèmes de reconnaissance d’objets de fournir une détection plus précise des objets d’intérêts grâce à la saillance visuelle afin d’améliorer les performances de reconnaissances d’activités de la vie de tous les jours. Cette thèse est menée dans le cadre du projet Européen Dem@care.Concernant le vaste domaine de la modélisation de la saillance visuelle, nous étudions et proposons une contribution à la fois dans le domaine "Bottom-up" (regard attiré par des stimuli) que dans le domaine "Top-down" (regard attiré par la sémantique) qui ont pour but d’améliorer la reconnaissance d’objets actifs dans les vidéos égocentriques. Notre première contribution pour les modèles Bottom-up prend racine du fait que les observateurs d’une vidéo sont normalement attirés par le centre de celle-ci. Ce phénomène biologique s’appelle le biais central. Dans les vidéos égocentriques cependant, cette hypothèse n’est plus valable.Nous proposons et étudions des modèles de saillance basés sur ce phénomène de biais non central.Les modèles proposés sont entrainés à partir de fixations d’oeil enregistrées et incorporées dans des modèles spatio-temporels. Lorsque comparés à l’état-de-l’art des modèles Bottom-up, ceux que nous présentons montrent des résultats prometteurs qui illustrent la nécessité d’un modèle géométrique biaisé non-centré dans ce type de vidéos. Pour notre contribution dans le domaine Top-down, nous présentons un modèle probabiliste d’attention visuelle pour la reconnaissance d’objets manipulés dans les vidéos égocentriques. Bien que les bras soient souvent source d’occlusion des objets et considérés comme un fardeau, ils deviennent un atout dans notre approche. En effet nous extrayons à la fois des caractéristiques globales et locales permettant d’estimer leur disposition géométrique. Nous intégrons cette information dans un modèle probabiliste, avec équations de mise a jour pour optimiser la vraisemblance du modèle en fonction de ses paramètres et enfin générons les cartes d’attention visuelle pour la reconnaissance d’objets manipulés. [...] / The rationale and motivation of this PhD thesis is in the diagnosis, assessment,maintenance and promotion of self-independence of people with dementia in their InstrumentalActivities of Daily Living (IADLs). In this context a strong focus is held towardsthe task of automatically recognizing IADLs. Egocentric video analysis (cameras worn by aperson) has recently gained much interest regarding this goal. Indeed recent studies havedemonstrated how crucial is the recognition of active objects (manipulated or observedby the person wearing the camera) for the activity recognition task and egocentric videospresent the advantage of holding a strong differentiation between active and passive objects(associated to background). One recent approach towards finding active elements in a sceneis the incorporation of visual saliency in the object recognition paradigms. Modeling theselective process of human perception of visual scenes represents an efficient way to drivethe scene analysis towards particular areas considered of interest or salient, which, in egocentricvideos, strongly corresponds to the locus of objects of interest. The objective of thisthesis is to design an object recognition system that relies on visual saliency-maps to providemore precise object representations, that are robust against background clutter and, therefore,improve the recognition of active object for the IADLs recognition task. This PhD thesisis conducted in the framework of the Dem@care European project.Regarding the vast field of visual saliency modeling, we investigate and propose a contributionin both Bottom-up (gaze driven by stimuli) and Top-down (gaze driven by semantics)areas that aim at enhancing the particular task of active object recognition in egocentricvideo content. Our first contribution on Bottom-up models originates from the fact thatobservers are attracted by a central stimulus (the center of an image). This biological phenomenonis known as central bias. In egocentric videos however this hypothesis does not alwayshold. We study saliency models with non-central bias geometrical cues. The proposedvisual saliency models are trained based on eye fixations of observers and incorporated intospatio-temporal saliency models. When compared to state of the art visual saliency models,the ones we present show promising results as they highlight the necessity of a non-centeredgeometric saliency cue. For our top-down model contribution we present a probabilisticvisual attention model for manipulated object recognition in egocentric video content. Althougharms often occlude objects and are usually considered as a burden for many visionsystems, they become an asset in our approach, as we extract both global and local featuresdescribing their geometric layout and pose, as well as the objects being manipulated. We integratethis information in a probabilistic generative model, provide update equations thatautomatically compute the model parameters optimizing the likelihood of the data, and designa method to generate maps of visual attention that are later used in an object-recognitionframework. This task-driven assessment reveals that the proposed method outperforms thestate-of-the-art in object recognition for egocentric video content. [...]
|
3 |
Vision-based approaches for surgical activity recognition using laparoscopic and RBGD videos / Approches basées vision pour la reconnaissance d’activités chirurgicales à partir de vidéos laparoscopiques et multi-vues RGBDTwinanda, Andru Putra 27 January 2017 (has links)
Cette thèse a pour objectif la conception de méthodes pour la reconnaissance automatique des activités chirurgicales. Cette reconnaissance est un élément clé pour le développement de systèmes réactifs au contexte clinique et pour des applications comme l’assistance automatique lors de chirurgies complexes. Nous abordons ce problème en utilisant des méthodes de Vision puisque l’utilisation de caméras permet de percevoir l’environnement sans perturber la chirurgie. Deux types de vidéos sont utilisées : des vidéos laparoscopiques et des vidéos multi-vues RGBD. Nous avons d’abord étudié les résultats obtenus avec les méthodes de l’état de l’art, puis nous avons proposé des nouvelles approches basées sur le « Deep learning ». Nous avons aussi généré de larges jeux de données constitués d’enregistrements de chirurgies. Les résultats montrent que nos méthodes permettent d’obtenir des meilleures performances pour la reconnaissance automatique d’activités chirurgicales que l’état de l’art. / The main objective of this thesis is to address the problem of activity recognition in the operating room (OR). Activity recognition is an essential component in the development of context-aware systems, which will allow various applications, such as automated assistance during difficult procedures. Here, we focus on vision-based approaches since cameras are a common source of information to observe the OR without disrupting the surgical workflow. Specifically, we propose to use two complementary video types: laparoscopic and OR-scene RGBD videos. We investigate how state-of-the-art computer vision approaches perform on these videos and propose novel approaches, consisting of deep learning approaches, to carry out the tasks. To evaluate our proposed approaches, we generate large datasets of recordings of real surgeries. The results demonstrate that the proposed approaches outperform the state-of-the-art methods in performing surgical activity recognition on these new datasets.
|
4 |
Knowledge-based support for surgical workflow analysis and recognition / Assistance fondée sur les connaissances pour l'analyse et la reconnaissance du flux de travail chirurgicalDergachyova, Olga 28 November 2017 (has links)
L'assistance informatique est devenue une partie indispensable pour la réalisation de procédures chirurgicales modernes. Le désir de créer une nouvelle génération de blocs opératoires intelligents a incité les chercheurs à explorer les problèmes de perception et de compréhension automatique de la situation chirurgicale. Dans ce contexte de prise de conscience de la situation, un domaine de recherche en plein essor adresse la reconnaissance automatique du flux chirurgical. De grands progrès ont été réalisés pour la reconnaissance des phases et des gestes chirurgicaux. Pourtant, il existe encore un vide entre ces deux niveaux de granularité dans la hiérarchie du processus chirurgical. Très peu de recherche se concentre sur les activités chirurgicales portant des informations sémantiques vitales pour la compréhension de la situation. Deux facteurs importants entravent la progression. Tout d'abord, la reconnaissance et la prédiction automatique des activités chirurgicales sont des tâches très difficiles en raison de la courte durée d'une activité, de leur grand nombre et d'un flux de travail très complexe et une large variabilité. Deuxièmement, une quantité très limitée de données cliniques ne fournit pas suffisamment d'informations pour un apprentissage réussi et une reconnaissance précise. À notre avis, avant de reconnaître les activités chirurgicales, une analyse soigneuse des éléments qui composent l'activité est nécessaire pour choisir les bons signaux et les capteurs qui faciliteront la reconnaissance. Nous avons utilisé une approche d'apprentissage profond pour évaluer l'impact de différents éléments sémantiques de l'activité sur sa reconnaissance. Grâce à une étude approfondie, nous avons déterminé un ensemble minimum d'éléments suffisants pour une reconnaissance précise. Les informations sur la structure anatomique et l'instrument chirurgical sont de première importance. Nous avons également abordé le problème de la carence en matière de données en proposant des méthodes de transfert de connaissances à partir d'autres domaines ou chirurgies. Les méthodes de ''word embedding'' et d'apprentissage par transfert ont été proposées. Ils ont démontré leur efficacité sur la tâche de prédiction d'activité suivante offrant une augmentation de précision de 22%. De plus, des observations pertinentes / Computer assistance became indispensable part of modern surgical procedures. Desire of creating new generation of intelligent operating rooms incited researchers to explore problems of automatic perception and understanding of surgical situations. Situation awareness includes automatic recognition of surgical workflow. A great progress was achieved in recognition of surgical phases and gestures. Yet, there is still a blank between these two granularity levels in the hierarchy of surgical process. Very few research is focused on surgical activities carrying important semantic information vital for situation understanding. Two important factors impede the progress. First, automatic recognition and prediction of surgical activities is a highly challenging task due to short duration of activities, their great number and a very complex workflow with multitude of possible execution and sequencing ways. Secondly, very limited amount of clinical data provides not enough information for successful learning and accurate recognition. In our opinion, before recognizing surgical activities a careful analysis of elements that compose activity is necessary in order to chose right signals and sensors that will facilitate recognition. We used a deep learning approach to assess the impact of different semantic elements of activity on its recognition. Through an in-depth study we determined a minimal set of elements sufficient for an accurate recognition. Information about operated anatomical structure and surgical instrument was shown to be the most important. We also addressed the problem of data deficiency proposing methods for transfer of knowledge from other domains or surgeries. The methods of word embedding and transfer learning were proposed. They demonstrated their effectiveness on the task of next activity prediction offering 22% increase in accuracy. In addition, pertinent observations about the surgical practice were made during the study. In this work, we also addressed the problem of insufficient and improper validation of recognition methods. We proposed new validation metrics and approaches for assessing the performance that connect methods to targeted applications and better characterize capacities of the method. The work described in this these aims at clearing obstacles blocking the progress of the domain and proposes a new perspective on the problem of surgical workflow recognition.
|
Page generated in 0.1013 seconds