Spelling suggestions: "subject:"reconnaissance dde formes structurelles"" "subject:"reconnaissance dee formes structurelles""
1 |
Indexation de masses de documents graphiques : approches structurellesJouili, Salim 30 March 2011 (has links) (PDF)
Les travaux de cette thèse se situent dans la cadre des approches structurelles pour la recon- naissance de formes. Plus précisément, nous avons porté notre choix sur les graphes. Le choix de la représentation structurelle est justifié par la grande capacité représentative des graphes par rapport à la représentation statistique (i.e. vecteurs). La première étape qui intervient dans l'étude de l'application des graphes dans le domaine des images est de définir une stratégie d'extraction de graphes représentatives d'images. Ensuite, il faut définir des fonctions néces- saires à la manipulation des bases de graphes. L'une des fonctions cruciales pour manipuler les graphes est la fonction de calcul des distances entre les graphes. En effet, le calcul de distances entre les graphes est un problème ouvert dans la littérature. De plus, il est considéré comme NP-complet. La plupart des solutions proposées dans la littérature présentent différentes limites d'utilisation telle que la taille des graphes, la prise en compte d'attributs, le temps de calcul. Outre la distance, le domaine des graphes souffre d'un manque d'algorithmes de classification (non-)supervisée appropriés. Dans ce sens, cette thèse présente un ensemble de contributions dont l'objectif est l'indexation de graphes. En premier lieu, nous montrons expérimentalement que choix de la représentation sous forme de graphes a un impact sur les performances. Ensuite, nous proposons une nouvelle approximation de la distance d'édition de graphes basée sur la no- tion de signature de noeuds. Nous introduisons aussi un algorithme de plongement de graphes. Cet algorithme consiste à représenter chaque graphe par un vecteur dans un espace euclidien. Ceci nous permet d'appliquer les algorithmes de classification des vecteurs sur les graphes par le biais du plongement. Dans le domaine de la classification non-supervisée (clustering), nous proposons un nouvel algorithme basé sur la notion du graphe médian et la notion du mean-shift. Enfin, nous proposons, une nouvelle méthode d'indexation de graphes basée sur la structure d'hypergraphe. Cette méthode permet aussi bien l'indexation que la navigation dans une base d'images représentées sous forme de graphes.
|
Page generated in 0.1316 seconds