Spelling suggestions: "subject:"reconnaissance dess formes (informatique)"" "subject:"reconnaissance dess formes (nformatique)""
41 |
Apprentissage de représentations sensori-motrices pour la reconnaissance d'objet en robotiqueDo Huu, Nicolas Chatila, Raja. January 2008 (has links)
Reproduction de : Thèse de doctorat : Intelligence artificielle : Toulouse 3 : 2007. / Titre provenant de l'écran-titre. Bibliogr. p. 120-124.
|
42 |
Contribution à l'étude et à la mise en oeuvre d'approches hybrides d'aide au diagnostic application aux domaines biomédical et industriel /Kanaoui, Nadia Madani, Kurosh. January 2008 (has links) (PDF)
Thèse de doctorat : Sciences informatiques : Paris 12 : 2007. / Titre provenant de l'écran-titre. Bibliogr. : 100 réf.
|
43 |
Groupements de contours en utilisant des modélisations markoviennes /Urago, Sabine. January 1900 (has links)
Th. doct.--Vision par ordinateur--Nice-Sophia Antipolis, 1996. / Bibliogr. p. 199-204. Résumé en anglais et en français. 1996 d'après la déclaration de dépôt légal.
|
44 |
Estimation géométrique et appariement en modélisation automatique /Tarel, Jean-Philippe. January 1900 (has links)
Th. doct.--Math. appl.--Paris 9, 1996. / Bibliogr. p. 209-221. Résumé. 1996 d'après la déclaration de dépôt légal.
|
45 |
Contribution à l'analyse de scènes par vision active : utilisation de réseaux bayesiens /Djian, David. January 1900 (has links)
Th. doct.--Informatique temps réel, robotique-automatique--Paris--Éc. natl. supér. mines, 1997. / Bibliogr. p. 159-164. Résumé en anglais et en français. 1997 d'après la déclaration de dépôt légal.
|
46 |
Étude et réalisation d'un extracteur rapide de caractéristiques d'image vidéo.Rakhodai, Issa, January 1900 (has links)
Th. doct.-ing.--Électronique, électrotechn., autom.--Toulouse--I.N.P., 1979. N°: 68.
|
47 |
Approche non supervisée de segmentation de bas niveau dans un cadre de surveillance vidéo d'environnements non contrôlésMartel-Brisson, Nicolas 18 April 2018 (has links)
La présente thèse propose un algorithme de segmentation de bas niveau pour des environnements complexes, allant de scènes intérieures peuplées aux scènes extérieures dynamiques. Basé sur des méthodes d'apprentissage développées pour une séquence vidéo où la caméra est fixe, le système est en mesure d'identifier les sections de l'image appartenant aux objets ou personnes d'avant-plan et ce, en dépit de perturbations temporelles de l'image de l'arrière-plan causées par les ombres, éléments naturels, changements d'illumination, etc. Nous proposons un cadre statistique d'estimation de densité de probabilité basé sur des kernels (KDE). Méthode polyvalente, les KDE requièrent toutefois des séquences d'entraînement où l'activité de l'avant-plan est minimale afin d'obtenir une bonne description initiale de la distribution de l'arrière-plan. Afin d'augmenter la flexibilité de ce type d'approche, nous exploitons la cohérence spatiale des événements d'avant-plan : en minimisant une fonction d'énergie globale par coupure de graphe, nous estimons les probabilités à priori et les densités associées à l'avant et l'arrière-plan pour chaque pixel de la scène. Pour y arriver, des indices tels la dispersion des données, la probabilité associée aux modes dans l'espace RGB, la persistance spatiale des événements et l'entropie relative des régions dans l'image sont utilisés dans un cadre statistique cohérent. Les ombres projetées qui sont détectées lors du processus de soustraction d'arrière-plan induisent des perturbations, tels la distorsion et la fusion des silhouettes, qui nuisent à la performance générale d'algorithmes de plus haut niveau dans un contexte de surveillance vidéo. Deux stratégies sont alors proposées afin de d'éliminer l'ombre projetée de la région d'intérêt. La première méthode utilise la capacité d'apprentissage de l'algorithme de Mixtures de Gaussiennes (GMM) dans le but de caractériser le comportement des ombres projetées sur les surfaces composant l'arrière-plan. La deuxième méthode s'appuie sur les propriétés physiques de l'ombre projetée et d'une mesure de gradient dans un cadre statistique non paramétrique afin d'estimer les valeurs d'atténuation des surfaces ombragées. La méthode permet la différenciation des ombres et de l'avant-plan lorsque ceux-ci partagent des valeurs de chromaticité similaire. Les résultats démontrent que notre approche est efficace dans une multitude de scénarios complexes.
|
48 |
Une méthode de machine à état liquide pour la classification de séries temporelles : A new liquid state machine method for temporal classification / New liquid state machine method for temporal classificationRhéaume, François 19 April 2018 (has links)
L'intérêt envers la neuroscience informatique pour les applications d'intelligence arti- cielle est motivé par plusieurs raisons. Parmi elles se retrouve la rapidité avec laquelle le domaine evolue, promettant de nouvelles capacités pour l'ingénieur. Dans cette thèse, une méthode exploitant les récents avancements en neuroscience informatique est présentée: la machine à état liquide (\liquid state machine"). Une machine à état liquide est un modèle de calcul de données inspiré de la biologie qui permet l'apprentissage sur des ux de données. Le modèle représente un outil prometteur de reconnaissance de formes temporelles. Déjà, il a démontré de bons résultats dans plusieurs applications. En particulier, la reconnaissance de formes temporelles est un problème d'intérêt dans les applications militaires de surveillance telle que la reconnaissance automatique de cibles. Jusqu'à maintenant, la plupart des machines à état liquide crées pour des problèmes de reconnaissance de formes sont demeurées semblables au modèle original. D'un point de vue ingénierie, une question se dégage: comment les machines à état liquide peuvent-elles être adaptées pour améliorer leur aptitude à solutionner des problèmes de reconnaissance de formes temporelles ? Des solutions sont proposées. La première solution suggèrée se concentre sur l'échantillonnage de l'état du liquide. À ce sujet, une méthode qui exploite les composantes fréquentielles du potentiel sur les neurones est définie. La combinaison de différents types de vecteurs d'état du liquide est aussi discutée. Deuxièmement, une méthode pour entrâner le liquide est développée. La méthode utilise la plasticité synaptique à modulation temporelle relative pour modeler le liquide. Une nouvelle approche conditionnée par classe de données est proposée, où différents réseaux de neurones sont entraînés exclusivement sur des classes particuli ères de données. Concernant cette nouvelle approche ainsi que celle concernant l'échantillonnage du liquide, des tests comparatifs ont été effectués avec l'aide de jeux de données simulées et réelles. Les tests permettent de constater que les méthodes présentées surpassent les méthodes conventionnelles de machine à état liquide en termes de taux de reconnaissance. Les résultats sont encore plus encourageants par le fait qu'ils ont été obtenus sans l'optimisation de plusieurs paramètres internes pour les differents jeux de données testés. Finalement, des métriques de l'état du liquide ont été investiguées pour la prédiction de la performance d'une machine à état liquide. / There are a number of reasons that motivate the interest in computational neuroscience for engineering applications of artificial intelligence. Among them is the speed at which the domain is growing and evolving, promising further capabilities for artificial intelligent systems. In this thesis, a method that exploits the recent advances in computational neuroscience is presented: the liquid state machine. A liquid state machine is a biologically inspired computational model that aims at learning on input stimuli. The model constitutes a promising temporal pattern recognition tool and has shown to perform very well in many applications. In particular, temporal pattern recognition is a problem of interest in military surveillance applications such as automatic target recognition. Until now, most of the liquid state machine implementations for spatiotemporal pattern recognition have remained fairly similar to the original model. From an engineering perspective, a challenge is to adapt liquid state machines to increase their ability for solving practical temporal pattern recognition problems. Solutions are proposed. The first one concentrates on the sampling of the liquid state. In this subject, a method that exploits frequency features of neurons is defined. The combination of different liquid state vectors is also discussed. Secondly, a method for training the liquid is developed. The method implements synaptic spike-timing dependent plasticity to shape the liquid. A new class-conditional approach is proposed, where different networks of neurons are trained exclusively on particular classes of input data. For the suggested liquid sampling methods and the liquid training method, comparative tests were conducted with both simulated and real data sets from different application areas. The tests reveal that the methods outperform the conventional liquid state machine approach. The methods are even more promising in that the results are obtained without optimization of many internal parameters for the different data sets. Finally, measures of the liquid state are investigated for predicting the performance of the liquid state machine.
|
49 |
Partial shape matching using CCP map and weighted graph transformation matchingNikjoo Soukhtabandani, Ali 20 April 2018 (has links)
La détection de la similarité ou de la différence entre les images et leur mise en correspondance sont des problèmes fondamentaux dans le traitement de l'image. Pour résoudre ces problèmes, on utilise, dans la littérature, différents algorithmes d'appariement. Malgré leur nouveauté, ces algorithmes sont pour la plupart inefficaces et ne peuvent pas fonctionner correctement dans les situations d’images bruitées. Dans ce mémoire, nous résolvons la plupart des problèmes de ces méthodes en utilisant un algorithme fiable pour segmenter la carte des contours image, appelée carte des CCPs, et une nouvelle méthode d'appariement. Dans notre algorithme, nous utilisons un descripteur local qui est rapide à calculer, est invariant aux transformations affines et est fiable pour des objets non rigides et des situations d’occultation. Après avoir trouvé le meilleur appariement pour chaque contour, nous devons vérifier si ces derniers sont correctement appariés. Pour ce faire, nous utilisons l'approche « Weighted Graph Transformation Matching » (WGTM), qui est capable d'éliminer les appariements aberrants en fonction de leur proximité et de leurs relations géométriques. WGTM fonctionne correctement pour les objets à la fois rigides et non rigides et est robuste aux distorsions importantes. Pour évaluer notre méthode, le jeu de données ETHZ comportant cinq classes différentes d'objets (bouteilles, cygnes, tasses, girafes, logos Apple) est utilisé. Enfin, notre méthode est comparée à plusieurs méthodes célèbres proposées par d'autres chercheurs dans la littérature. Bien que notre méthode donne un résultat comparable à celui des méthodes de référence en termes du rappel et de la précision de localisation des frontières, elle améliore significativement la précision moyenne pour toutes les catégories du jeu de données ETHZ. / Matching and detecting similarity or dissimilarity between images is a fundamental problem in image processing. Different matching algorithms are used in literature to solve this fundamental problem. Despite their novelty, these algorithms are mostly inefficient and cannot perform properly in noisy situations. In this thesis, we solve most of the problems of previous methods by using a reliable algorithm for segmenting image contour map, called CCP Map, and a new matching method. In our algorithm, we use a local shape descriptor that is very fast, invariant to affine transform, and robust for dealing with non-rigid objects and occlusion. After finding the best match for the contours, we need to verify if they are correctly matched. For this matter, we use the Weighted Graph Transformation Matching (WGTM) approach, which is capable of removing outliers based on their adjacency and geometrical relationships. WGTM works properly for both rigid and non-rigid objects and is robust to high order distortions. For evaluating our method, the ETHZ dataset including five diverse classes of objects (bottles, swans, mugs, giraffes, apple-logos) is used. Finally, our method is compared to several famous methods proposed by other researchers in the literature. While our method shows a comparable result to other benchmarks in terms of recall and the precision of boundary localization, it significantly improves the average precision for all of the categories in the ETHZ dataset.
|
50 |
Détection d'objets multi-parties par algorithme adaptatif et optimiséVilleneuve, Guillaume 19 April 2018 (has links)
Dans ce mémoire, nous proposons des améliorations à une méthode existante de dé- tection d'objets de forme inconnue à partir de primitives simples. Premièrement, avec un algorithme adaptatif, nous éliminons les cas où on n'obtenait aucun résultat avec certaines images en retirant la plupart des seuils fixes, ce qui assure un certain nombre de groupes de primitives à chaque étape. Ensuite, l'ajout de certaines optimisations et d'une version parallèle de la méthode permettent de rendre le temps d'exécution raisonnable pour ce nouvel algorithme. Nous abordons ensuite le problème des solutions trop semblables en ajoutant une nouvelle étape de structuration qui réduira leur nombre sans en affecter la variété grâce au regroupement hiérarchique. Finalement, nous ajustons certains paramètres et des résultats sont produits avec trois ensembles de 10 images. Nous réussissons à prouver de manière objective que les résultats obtenus sont meilleurs qu'avec la méthode précédente. / In this thesis, we propose improvements to an existing unknown shape object detection method that uses simple primitives. Firstly, we eliminate cases where no results were obtained with some images using an adaptive algorithm by removing most of the fixed thresholds, assuring a certain number of primitive groups at each step. Secondly, adding some optimizations and a parallel version of the algorithm make the running time of this new algorithm reasonable. Thirdly, we approach the problem of the redundant solutions by adding a new structuring step that will reduce their number without affecting their variety using hierarchical clustering. Finally, we adjust some parameters and results are produced using three sets of 10 images. We prove in an objective manner that the obtained results are better than those of the previous method.
|
Page generated in 0.139 seconds