• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 26
  • 14
  • 12
  • 9
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 185
  • 31
  • 28
  • 21
  • 18
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Turbulent diffusion in channels of complex geometry

Kearney, Dominic January 2000 (has links)
This thesis examines turbulent diffusion processes in rectangular and compound open channels, with particular attention to the effect of secondary flow and the relationship between eddy viscosity and eddy diffusivity. Three dimensional velocities and concentration were measured using 3 component Laser Doppler Velocimetry (LDV) combined with Laser Induced Fluorescence (LIF) from three laboratory flumes: one rectangular simple channel and a deep and a shallow compound channel. (Continues...).
2

Trapped-wave propagation along irregular coasts and channels

Santos, Joao Alfredo Ferreira dos January 1999 (has links)
No description available.
3

Physical modelling of mixing between rectangular jets present in tangentially fired brown coal boilers.

Scarsella, Alessio Angelo January 2007 (has links)
Large scale power generation commences with the combustion of coal or other fuel, which in turn converts high pressure water into steam which then drives a turbine thus generating electricity. Burning high moisture coal, such as lignite, for power generation implies that a significant amount of energy is wasted in vaporising the moisture, which could otherwise be used in the steam raising process. This implies that more moist coal would be required to drive the same process than if the coal was drier, thus increasing the amount of combustion products such as greenhouses gases. Introducing a dried coal in an existing boiler will significantly change the heat flux profiles, which could result in boiler damage or excessive fouling. Flame temperature is influenced by the supply of reactants; in most cases the limiting reactant will be oxygen. The supply of oxygen (through air) to a pneumatically transported coal stream and subsequent reaction is controlled by the localised fluid mechanics or ‘mixing’. This research aims to provide an understanding of the mixing process between the pneumatically transported coal and air in brown coal fired boilers by modelling the individual jets. The effects of the change in velocity ratio for the air (secondary) jets and fuel (primary) jets of rectangular burners typical of those found in brown coal fired boilers has been studied experimentally and is reported in this thesis. In particular, scientific analysis was used to investigate the physical mechanisms which control fuel-air mixing, and to quantify the concentration of primary and secondary fluid. The concentration data was used in a regression model in conjunction with a reactive combustion model, developed from a 1:30 scale cold model of the Yallourn W’ stage 2 boiler, in order that overall boiler performance can be assessed. This overall study is fundamental as a result of the questions raised concerning the future of brown coal in modern society. A qualitative flow visualisation study of the unconfined 1:30 scaled primary, and two adjacent rectangular jets, was conducted using single colour planar laser induced fluorescence. The characteristics of the jet flow were examined by imaging individually seeded primary and secondary jets and were visualised through four different planes longitudinally, on the axes of each jet. In addition, a transverse qualitative and quantitative study on the rectangular jets was also conducted for the individually seeded jets, and was visualised through planes of flow perpendicular to the direction flow, specifically at axial stations of x/D =0.1, 0.2, 0.5, 1, 2, 4, 6 and 8. The flow characteristics were also examined under different co-flow conditions, particularly secondary to primary jet velocity ratios (λ) of 0, 0.55, 1.4, 2.8, 3.6 and ∞. This quantitative data yields the basis for a 3D regression model to predict fuel-air mixing in actual boilers. A semi-quantitative investigation into some geometrical modifications on the rectangular jets was also conducted at velocity ratios of λ=0, 0.55 and 1.4. The rectangular nozzles were fitted with base plates orientated at 90 degrees and 60 degrees to the direction of flow. The longitudinal flow visualisation study highlighted the effect of velocity ratio on the flow field of the primary and secondary jets. In particular it showed that the main structures of the primary and secondary jets are sensitive to the co-flowing conditions. The primary jet also experienced the formation of coherent structures close to the bluff body re-circulation region for λ>2.8. The quantitative transverse analysis of the rectangular jets showed that the primary jet and secondary jets close to the nozzle exit plane distorted with a change in co-flowing conditions. The primary jet experienced distortion for λ>1.4, and the secondary jets experienced distortion for λ <1.4. A plausible mechanism for this “distortion” can be explained by different co-flowing conditions altering the velocity gradients of the jet, thus changing the denomination of the counter rotating vortices present in the corners of rectangular jets, allowing them to alter jet shape. The transverse quantitative analysis of the rectangular jets allowed for graphical representation of the normalised concentration of the primary and secondary jets in the radial direction and the centreline mixture fraction decay. The analysis of the latter showed that the primary jet, under all co-flow conditions, reached self-similarity at approximately x/D =4, whereas the secondary jets did so at x/D =2. The primary jets observed greater rates of centreline dilution at high velocity ratios, whereas the secondary jets did so at λ=0.55. The quantification of the centreline concentration decay obeyed the inverse rate law for all co-flowing conditions. The first order decay constant K₁, was found to be heavily dependant on velocity ratio. The planar transverse quantitative data of the primary and secondary jets was used with the method of weighted squares to develop a regression model that would three-dimensionally reproduce the scalar mixing field as a function of velocity ratio. The regression model reproduces scalar quantities for λ=0 and λ=0.55 to 3.6 for the primary jet and λ=0.55 to 3.6 and ∞ for the secondary jet, and is capable of predicting primary and secondary bulk fluid concentrations within 30 to 40 % of the measured values. A sensitivity analysis on the regression model revealed that it is highly responsive to the momentum-controlling region between the jets with a change in velocity ratio. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1297627 / Thesis (Ph.D.) -- University of Adelaide, School of Chemical Engineering, 2007
4

Physical modelling of mixing between rectangular jets present in tangentially fired brown coal boilers.

Scarsella, Alessio Angelo January 2007 (has links)
Large scale power generation commences with the combustion of coal or other fuel, which in turn converts high pressure water into steam which then drives a turbine thus generating electricity. Burning high moisture coal, such as lignite, for power generation implies that a significant amount of energy is wasted in vaporising the moisture, which could otherwise be used in the steam raising process. This implies that more moist coal would be required to drive the same process than if the coal was drier, thus increasing the amount of combustion products such as greenhouses gases. Introducing a dried coal in an existing boiler will significantly change the heat flux profiles, which could result in boiler damage or excessive fouling. Flame temperature is influenced by the supply of reactants; in most cases the limiting reactant will be oxygen. The supply of oxygen (through air) to a pneumatically transported coal stream and subsequent reaction is controlled by the localised fluid mechanics or ‘mixing’. This research aims to provide an understanding of the mixing process between the pneumatically transported coal and air in brown coal fired boilers by modelling the individual jets. The effects of the change in velocity ratio for the air (secondary) jets and fuel (primary) jets of rectangular burners typical of those found in brown coal fired boilers has been studied experimentally and is reported in this thesis. In particular, scientific analysis was used to investigate the physical mechanisms which control fuel-air mixing, and to quantify the concentration of primary and secondary fluid. The concentration data was used in a regression model in conjunction with a reactive combustion model, developed from a 1:30 scale cold model of the Yallourn W’ stage 2 boiler, in order that overall boiler performance can be assessed. This overall study is fundamental as a result of the questions raised concerning the future of brown coal in modern society. A qualitative flow visualisation study of the unconfined 1:30 scaled primary, and two adjacent rectangular jets, was conducted using single colour planar laser induced fluorescence. The characteristics of the jet flow were examined by imaging individually seeded primary and secondary jets and were visualised through four different planes longitudinally, on the axes of each jet. In addition, a transverse qualitative and quantitative study on the rectangular jets was also conducted for the individually seeded jets, and was visualised through planes of flow perpendicular to the direction flow, specifically at axial stations of x/D =0.1, 0.2, 0.5, 1, 2, 4, 6 and 8. The flow characteristics were also examined under different co-flow conditions, particularly secondary to primary jet velocity ratios (λ) of 0, 0.55, 1.4, 2.8, 3.6 and ∞. This quantitative data yields the basis for a 3D regression model to predict fuel-air mixing in actual boilers. A semi-quantitative investigation into some geometrical modifications on the rectangular jets was also conducted at velocity ratios of λ=0, 0.55 and 1.4. The rectangular nozzles were fitted with base plates orientated at 90 degrees and 60 degrees to the direction of flow. The longitudinal flow visualisation study highlighted the effect of velocity ratio on the flow field of the primary and secondary jets. In particular it showed that the main structures of the primary and secondary jets are sensitive to the co-flowing conditions. The primary jet also experienced the formation of coherent structures close to the bluff body re-circulation region for λ>2.8. The quantitative transverse analysis of the rectangular jets showed that the primary jet and secondary jets close to the nozzle exit plane distorted with a change in co-flowing conditions. The primary jet experienced distortion for λ>1.4, and the secondary jets experienced distortion for λ <1.4. A plausible mechanism for this “distortion” can be explained by different co-flowing conditions altering the velocity gradients of the jet, thus changing the denomination of the counter rotating vortices present in the corners of rectangular jets, allowing them to alter jet shape. The transverse quantitative analysis of the rectangular jets allowed for graphical representation of the normalised concentration of the primary and secondary jets in the radial direction and the centreline mixture fraction decay. The analysis of the latter showed that the primary jet, under all co-flow conditions, reached self-similarity at approximately x/D =4, whereas the secondary jets did so at x/D =2. The primary jets observed greater rates of centreline dilution at high velocity ratios, whereas the secondary jets did so at λ=0.55. The quantification of the centreline concentration decay obeyed the inverse rate law for all co-flowing conditions. The first order decay constant K₁, was found to be heavily dependant on velocity ratio. The planar transverse quantitative data of the primary and secondary jets was used with the method of weighted squares to develop a regression model that would three-dimensionally reproduce the scalar mixing field as a function of velocity ratio. The regression model reproduces scalar quantities for λ=0 and λ=0.55 to 3.6 for the primary jet and λ=0.55 to 3.6 and ∞ for the secondary jet, and is capable of predicting primary and secondary bulk fluid concentrations within 30 to 40 % of the measured values. A sensitivity analysis on the regression model revealed that it is highly responsive to the momentum-controlling region between the jets with a change in velocity ratio. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1297627 / Thesis (Ph.D.) -- University of Adelaide, School of Chemical Engineering, 2007
5

Magnetohydrodynamic lattice Boltzmann simulations of turbulence and rectangular jet flow

Riley, Benjamin Matthew 15 May 2009 (has links)
Magnetohydrodynamic (MHD) investigations of decaying isotropic turbulence and rectangular jets (RJ) are carried out. A novel MHD lattice Boltzmann scheme that combines multiple relaxation time (MRT) parameters for the velocity field with a single relaxation time (SRT) parameter for the Maxwell’s stress tensor is developed for this study. In the MHD homogeneous turbulence studies, the kinetic/magnetic energy and enstrophy decays, kinetic enstrophy evolution, and vorticity alignment with the strain-rate tensor are evaluated to assess the key physical MHD turbulence mechanisms. The magnetic and kinetic energies interact and exchange through the influence of the Lorentz force work. An initial random fluctuating magnetic field increases the vortex stretching and forward cascade mechanisms. A strong uniform mean magnetic field increases the anisotropy of the turbulent flow field and causes inverse cascading. In the RJ studies, an investigation into the MHD effects on velocity, instability, and the axis-switching phenomena is performed at various magnetic field strengths and Magnetic Reynolds Numbers. The magnetic field is found to decelerate the jet core, inhibit instability, and prevent axis-switching. The key physical mechanisms are: (i) the exchange of energy between kinetic and magnetic modes and (ii) the magnetic field effect on the vorticity evolution. From these studies, it is found that magnetic field influences momentum, vorticity, and energy evolution and the degree of modification depends on the field strength. This interaction changes vortex evolution, and alters turbulence processes and rectangular jet flow characteristics. Overall, this study provides more insight into the physics of MHD flows, which suggests possible applications of MHD Flow Control.
6

Numerical study for heat and mass transfer of silicon dioxide layer chemical vapor deposition process in a rectangular chamber

Chiou, Bo-ching 11 August 2005 (has links)
This study employed a commercial code FLUENT to simulate a chemical vapor deposition process in a rectangular chamber for deposition of a silicon dioxide layer on a rectangular substrate. We focus on the deposition rate and heat transfer coefficient (Nu number) on the substrate surface. We discuss the effects of the size of inlet region, the distance from inlet to substrate, the size of outlet region, the Reynolds number, the temperature of substrate, the ratio of the inlet flow rates of the two reaction gases on the deposition rate. The results show that the four corners at the substrate has the lowest deposition rate no matter how the variables are changed. Near the four corners there exist a region with high deposition rate. The deposition rate is more uniform when inlet is larger or equal to the substrate, and when the distance between the inlet and the substrate is small. The larger the size of the outlet region, the larger the uniform deposition rate region present on the central part of the substrate. The deposition rate increases with increasing Re number. However the uniformity remains similarly. The deposition rate also increases with increasing the substrate temperature. A study of the inlet flow rate ratio of TEOS and indicates that TEOS flow rate governs the process. A proper flow rate ratio gives a better deposition rate.
7

Heat and mass transfer modeling for a CVD process in manufacturing TFT-LCD

Liu, Yu-chen 25 August 2006 (has links)
This study employed a commercial code to simulate a chemical vapor deposition process in a rectangular chamber for deposition of a silicon dioxide layer on a rectangular substrate. We focus on the deposition rate on the substrate surface. We discuss the effects of the Reynolds number, the distance from inlet to substrate, the size of inlet region, the temperature of the inlet region, and the temperature of substrate. The results show that as the temperature increase, the deposition rate on the substrate grows highly. This effect will decrease if the temperature is above the specific range. Besides, it is easily deposited unequally on the edge and corner region of the substrate. However, the central region on the substrate is still uniform. We could get bigger uniform area to adjust the proper conditions.
8

Vibration Analysis of Rectangular Plates Subjected to Non-Uniform Loading

Wang, Wei-Ming 20 August 2009 (has links)
Due to most studies on vibration of pre-loaded rectangular plate being subject to uniform loading, this thesis will investigate vibration of plate under preloading with sine functional distributions. The approach behind this study is using first-order shear deformation plate theory and finite element method to analyze vibration frequency. Study results show that, when a plate¡¦s boundary condition is CCCC, SSSS, CFCF, or SFSF with sine functional pre-loading, its vibration frequency will increase to an extent with little difference when the number of modes increases. Vibration frequency will increase shortly then decrease when increasing the number of sine waves. Vibration frequency will also increase when increasing stress parameters. However, obvious frequency changes are observed only at lower modes with SFSF boundary condition.
9

On the flowfield and forces generated by a rectangular wing undergoing moderate reduced frequency flapping at low reynolds number

Ames, Richard Gene 05 1900 (has links)
No description available.
10

Laminar Natural Convection in Air-Filled Rectangular Cavities With and Without Partitions on Walls

Wu, Wenjiang 12 1900 (has links)
<p>The laminar natural convection in air-filled rectangular cavities with and without a partition on the wall was experimentally investigated. Temperature measurements and flow visualizations were performed for cases with heated and cooled vertical walls (corresponding to global Grashof numbers GrH of approximately 1.4 x 10^8 to 1.8 x 10^8) and non-dimensional top wall temperatures θT of 0.52 (insulated) to 2.3. In the rectangular cavities without the partition and with aspect ratios of 0.5, 1.0 and 2.0, the heated top wall caused the natural convection boundary layer flow to separate from either the top wall (for the cases with Or ;S 1.2) or the heated vertical wall (for the cases with θT >~ 1.2) due to the negative buoyancy force. For the cases with θT >~ 1.2, there is an anti-clockwise recirculating flow in the upper left corner region. The extent of the recirculating flow decreased with an increase of the aspect ratio. The temperature gradient in the core region, dθ∞ /d(y/H), increased with an increase of θT. For a given aspect ratio, dθ∞/d(y/H) changed more rapidly with the change in θT for the cases with θT <~ 1.2 compared to the cases with θT >~ 1.2. The increase in dθ∞/ d(y/H) was more significant for the smaller aspect ratio cavity. The temperature profiles predicted from the similarity solutions proposed by Kulkarni et al. [1] and from the non-similarity model developed by Chen and Eichhorn [2] for natural convection on an isothermal vertical wall in a stratified environment were compared to the measurements in the current cases. These models were not able to accurately describe the characteristics of the natural convection flow in the rectangular cavities.</p> <p>An aluminium partition with non-dimensional heights Hp/H of 0.0625 and 0.125 was attached either to the heated vertical wall or top wall at y/H = 0.65, 0.95 and x/H = 0.1, 0.2, 0.4 and 0.6 to study the effect of the partition on the laminar natural convection flow in a square cavity. The blockage and thermal effects of the partition resulted in changes in the temperature and flow fields, but were mainly limited in the vicinity of the partition. The effect of the partition changed with the height and location of the partition. When the partition was attached to the heated top wall, a recirculating flow was formed between the partition and the heated vertical wall. For a given partition height, the structure of this recirculating flow was dependent on the partition location and θT. A thermal boundary layer developed along the rear surface of the partition due to the thermal effect of the partition. The ambient temperature outside the boundary layer and Nu near the corner region were affected by the partition height due to the changes in the recirculating flow and the rear surface of the partition.</p> / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.0542 seconds