• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical study for heat and mass transfer of silicon dioxide layer chemical vapor deposition process in a rectangular chamber

Chiou, Bo-ching 11 August 2005 (has links)
This study employed a commercial code FLUENT to simulate a chemical vapor deposition process in a rectangular chamber for deposition of a silicon dioxide layer on a rectangular substrate. We focus on the deposition rate and heat transfer coefficient (Nu number) on the substrate surface. We discuss the effects of the size of inlet region, the distance from inlet to substrate, the size of outlet region, the Reynolds number, the temperature of substrate, the ratio of the inlet flow rates of the two reaction gases on the deposition rate. The results show that the four corners at the substrate has the lowest deposition rate no matter how the variables are changed. Near the four corners there exist a region with high deposition rate. The deposition rate is more uniform when inlet is larger or equal to the substrate, and when the distance between the inlet and the substrate is small. The larger the size of the outlet region, the larger the uniform deposition rate region present on the central part of the substrate. The deposition rate increases with increasing Re number. However the uniformity remains similarly. The deposition rate also increases with increasing the substrate temperature. A study of the inlet flow rate ratio of TEOS and indicates that TEOS flow rate governs the process. A proper flow rate ratio gives a better deposition rate.

Page generated in 0.1181 seconds