Spelling suggestions: "subject:"rectum cancer - 1genetic aspects."" "subject:"rectum cancer - cogenetic aspects.""
11 |
Novel recurrent point mutation and gene fusion identified by new generation sequencing in colorectal cancer. / CUHK electronic theses & dissertations collectionJanuary 2013 (has links)
He, Jun. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 136-156). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
12 |
A study on the expression and function of Jagged 2 protein in human colorectal cancer. / JAG2蛋白在人類大腸癌的表達及功能的研究 / CUHK electronic theses & dissertations collection / JAG2 dan bai zai ren lei da chang ai de biao da ji gong neng de yan jiuJanuary 2013 (has links)
大腸癌是全世界最常見的癌症之一,亦是一個癌症死亡率的首要原因。大腸癌患者約50%在病程中會出現轉移病灶。近十年來,雖然多種被批准用於臨床治療的新化療藥顯著提高了大腸癌的治療效果,但是轉移性大腸癌病人的預後仍然很差。隨著各種分子生物技術的進步,新的治療標靶可能在大腸癌細胞株中被發現,並得以在病人標本中驗證。 / 在本研究中,我們採用即時定量多聚酶鏈反應(qPCR)陣列分析,比較大腸癌細胞株和正常大腸細胞株基因表達譜,試圖識別潛在的新的治療標靶。結果提示,與正常大腸細胞株 CCD-18Co 比較,Jagged 2 (JAG2) 和 Frizzled-3 (FZD3)基因 在大腸癌細胞株 SW480 和 SW620 中表達升高。病人大腸癌組織的免疫組織化學染色 (IS) 檢查進一步證實了上述結果,大腸癌組織較其癌旁正常組織表達3.1倍JAG2和6.6倍FZD3蛋白。因此, 我們假設JAG2和FZD3在大腸癌的發生中起重要作用。 / 為了檢驗該假設的真偽,我們運用RNA 干擾的方法進行功能缺失研究。通過該方法,大腸癌細胞株中JAG2 信使RNA和蛋白均能夠被下調,但是FZD3蛋白卻沒有顯示降低。為了弄清JAG2基因的功能,我們進行了單層細胞劃痕傷口癒合試驗和Matrigel 侵襲試驗。結果提示,JAG2 基因下調顯著抑制大腸癌細胞遷移和侵襲的能力。 / 為了調查參與上述功能的機制,我們利用腫瘤轉移相關基因的qPCR陣列分析,試圖檢測出JAG2基因敲除後上調或下調表達的轉移相關基因。結果顯示組織蛋白酶K (CTSK),一種溶酶體半胱氨酸蛋白酶,在JAG2基因沉默的大腸癌細胞株中表達下調。為了闡明CTSK 活性在大腸癌細胞株侵襲能力中起到的作用,我們採用CTSK抑制劑處理大腸癌細胞株HCT116和DLD-1,發現這兩種細胞株的侵襲能力分別下降了36%和59%。總之, 這些發現表明CTSK可能是JAG2的下游靶基因,活性CTSK可能參與了JAG2介導的大腸癌細胞株侵襲能力。 / 以前的研究表明p38 MAPK通路參與癌細胞遷和侵襲能力的調控。通過Western blot方法,磷酸化的p38和磷酸化的STAT3被發現在JAG2基因沉默的大腸癌細胞中表達降低。p38抑制劑處理的 HCT116和DLD-1細胞降低了侵襲能力下降,同時遷移能力也由於p38抑制劑的處理而降低,支持p38可調控癌細胞遷移和侵襲能力的事實。 / 總之,我們的結果顯示JAG2高表達通過啟動CTSK和p38 MAPK通路,可能促進大腸癌轉移。因此,JAG2可能成為轉移性大腸癌治療的潛在標靶。 / Colorectal cancer (CRC) is one of the most frequent cancers worldwide and is a leading cause of cancer mortality. Around 50% of patients with CRC will experience metastases. Although significant progress has been made in CRC treatment within the last decade with the approval of multiple new chemotherapeutic agents, the prognosis for patients with metastatic CRC remains poor. With the advancement of molecular techniques, novel therapeutic targets are able to be discovered in CRC cell lines and validated in patient samples. / Therefore in this project, I aim to identify potential novel therapeutic targets by comparing the gene expression profile of colon cancer cell lines and a normal colon cell line using quantitative polymerase chain reaction (qPCR) arrays. Results showed that Jagged 2 (JAG2) and Frizzled-3 (FZD3) were up-regulated in the CRC cell lines SW480 and SW620 as compared to the normal colon cell line CCD-18Co. Those results were further validated by immunohistochemical staining (IS), which detected up-regulated JAG2 (3.1-fold) and FZD3 (6.6-fold) proteins expression in CRC tissues as compared to adjacent normal tissues. Thus I hypothesized that JAG2 and FZD3 may play an important role in CRC carcinogenesis. / In order to study the roles of FZD3 and JAG2 in CRC, loss-of-function studies by RNA interference (RNAi) were carried out. While the expression of FZD3 protein failed to be down-regulated by RNAi, JAG2 expression was successfully knocked down in CRC cell lines at both the mRNA and protein levels. Functional analyses using the monolayer scratch wound-healing assay and Matrigel invasion assay showed that JAG2 knockdown significantly inhibited migration and invasion in CRC cell lines. / To investigate the mechanisms involved, a tumour metastasis qPCR array was used to examine the changes in the expression level of metastasis-related genes after JAG2 gene knockdown. Results showed that the expression of Cathepsin K (CTSK), a lysosomal cystein protease, was found to be down-regulated in CRC cell lines following JAG2 silencing. To demonstrate the importance of CTSK activity in CRC cell invasion, HCT116 and DLD-1 CRC cell lines were treated with a CTSK inhibitor and its effect were assessed by the Matrigel invasion assay. Results showed that CTSK inhibition led to a 36% and 59% reduction in number of invaded cells in HCT116 and DLD-1 cell lines, respectively. Taken together, these findings show that CTSK may be a downstream target of JAG2 and that active CTSK may involve in JAG2 mediated invasion in CRC cell lines. / Previous works by others have shown that the p38 MAPK pathway is involved in the regulation of migration and invasive activity of cancer cell lines. Using Western blot analysis, the expression of phosphorylated p38 MAPK and phosphorylated STAT3 were found to be down-regulated following JAG2 depletion in CRC cell lines. In support of a role for p38 MAPK in the regulation of cancer cell migration and invasive capability, treatment with a p38 MAPK inhibitor was found to reduce the percentage of invasive cells and distance moved by migratory cells in HCT116 and DLD-1 cell lines. / In conclusion, my results show that JAG2 over-expression in CRC may promote cancer cell migration and invasion through activation of CTSK and the p38 MAPK pathway. Therefore, JAG2 may be a potential therapeutic target for treatment of metastatic CRC. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / He, Wan. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 164-207). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts also in Chinese. / Abstract in English --- p.i / Abstract in Chinese --- p.iv / Acknowledgements --- p.vi / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Colorectal Cancer (CRC) --- p.1 / Chapter 1.1.1 --- Epidemiology and Incidence --- p.1 / Chapter 1.1.2 --- Histology --- p.2 / Chapter 1.1.3 --- Gender and Age --- p.4 / Chapter 1.1.4 --- Etiology of CRC --- p.4 / Chapter 1.1.4.1 --- Environment --- p.4 / Chapter 1.1.4.2 --- Hereditary Factors --- p.5 / Chapter 1.1.4.3 --- Dietary Factors --- p.6 / Chapter 1.1.4.4 --- Obesity --- p.6 / Chapter 1.1.4.5 --- Tobacco and alcoho --- p.7 / Chapter 1.1.4.6 --- Inflammatory bowel disease (IBC) --- p.7 / Chapter 1.1.5 --- Genetic Changes in CRC --- p.8 / Chapter 1.1.5.1 --- Chromosomal Aberration --- p.8 / Chapter 1.1.5.2 --- Tumor Suppressor Genes --- p.10 / Chapter 1.1.5.2.1 --- APC gene --- p.10 / Chapter 1.1.5.2.2 --- P53 gene --- p.11 / Chapter 1.1.5.2.3 --- SMAD4 gene --- p.11 / Chapter 1.1.5.3 --- Oncogenes --- p.12 / Chapter 1.1.5.3.1 --- Epidermal Growth Factor Receptor (EGFR) gene --- p.12 / Chapter 1.1.5.3.2 --- RAS gene and BRAF gene --- p.13 / Chapter 1.1.5.4 --- Proposed Two-hit Model for the Multistep Pathogenesis of CRC --- p.15 / Chapter 1.1.6 --- Clinical Presentation and Diagnosis --- p.16 / Chapter 1.1.7 --- Theatment --- p.16 / Chapter 1.1.7.1 --- Surgery --- p.16 / Chapter 1.1.7.2 --- Radiotherapy (RT) --- p.17 / Chapter 1.1.7.3 --- Concurrent Chemotherapy --- p.17 / Chapter 1.1.7.4 --- Target Therapy --- p.18 / Chapter 1.1.7.5 --- Colorectal Cancer Treatment by Stage --- p.19 / Chapter 1.1.7.6 --- Novel Strategies --- p.20 / Chapter 1.1.7.6.1 --- Epigenetic therapy --- p.20 / Chapter 1.1.7.6.2 --- Immunotherapy --- p.21 / Chapter 1.2 --- Pathways Involved in CRC Carcinogenesisand Progression --- p.22 / Chapter 1.2.1 --- Wnt Signaling Pathway --- p.22 / Chapter 1.2.2 --- Notch Signaling --- p.23 / Chapter 1.2.3 --- Nuclear Factor-kappa B (NF-κB) Signaling Pathway --- p.23 / Chapter 1.2.4 --- Phosphatidylinositol 3-kinase (PI3K) Signaling Pathway --- p.24 / Chapter 1.2.5 --- Crosstalk Among WNT, NOTCH, NF-κB and PI3K Signaling Pathway in CRC --- p.24 / Chapter 1.3 --- Hypothesis and Objectives of this Study --- p.28 / Chapter Chapter 2 --- Identification of Differentially Expressed Genes between Colorectal Cancer Cell Lines and A Normal Colon Cell Line --- p.29 / Chapter 2.1 --- Background --- p.29 / Chapter 2.2 --- Materials and Methods --- p.33 / Chapter 2.2.1 --- Cell Lines --- p.33 / Chapter 2.2.2 --- Identification of Differetially Expressed Genes by qPCR Arrays --- p.33 / Chapter 2.2.2.1 --- Total RNA Extraction --- p.33 / Chapter 2.2.2.2 --- RNA Quality Contol --- p.34 / Chapter 2.2.2.3 --- Reverse Transcription (RT) --- p.34 / Chapter 2.2.2.4 --- PCR Arrays --- p.34 / Chapter 2.3 --- Results --- p.36 / Chapter 2.3.1 --- Differentially Expressed Genes in WNT Signaling Pathway --- p.36 / Chapter 2.3.2 --- Differentially Expressed Genes in Notch Signaling Pathway --- p.40 / Chapter 2.3.3 --- Differentially Expressed Genes in NF-κB Signaling Pathway --- p.43 / Chapter 2.3.4 --- Differentially Expressed Genes in PI3K-AKT Signaling Pathway --- p.46 / Chapter 2.3.5 --- Choice of over-expressed genes for further validation and characterization --- p.49 / Chapter 2.4 --- Discussions --- p.53 / Chapter 2.4.1 --- WNT Signaling Pathway --- p.53 / Chapter 2.4.2 --- NOTCH Signaling Pathway --- p.54 / Chapter 2.4.3 --- NF-κB Signaling Pathway --- p.55 / Chapter 2.4.4 --- PI3K-AKT Signaling Pathway --- p.56 / Chapter 2.4.5 --- Choice of over-expressed genes for further validation and characterization --- p.56 / Chapter Chapter 3 --- JAG2, FZD3 and NOTCH4 Expression in Colorectal Cancer Cell Lines and Colorectal Cancer Tissues --- p.59 / Chapter 3.1 --- Background --- p.59 / Chapter 3.1.1 --- JAG2 Ligand --- p.59 / Chapter 3.1.2 --- FZD3 Receptor --- p.61 / Chapter 3.1.3 --- NOTCH4 Receptor --- p.62 / Chapter 3.2 --- Materials and Methods --- p.64 / Chapter 3.2.1 --- CRC Cell Lines --- p.65 / Chapter 3.2.2 --- CRC Tissues --- p.65 / Chapter 3.2.3 --- Quantitative RT-PCR --- p.66 / Chapter 3.2.4 --- Detection of JAG2, FZD3 and NOTCH4 Protein Expression in CRC Tissues by Immunohistochemical Staining (IS) --- p.67 / Chapter 3.2.5 --- Western Blot Assays --- p.68 / Chapter 3.2.5.1 --- Protein extraction --- p.68 / Chapter 3.2.5.2 --- SDS-PAGE gel electrophroresis --- p.68 / Chapter 3.2.5.3 --- Protein blotting --- p.68 / Chapter 3.2.6 --- Detection of JAG2 and FZD3 Protein Expression in CRC and Normal Colon Cell Lines by Western Blotting --- p.69 / Chapter 3.2.7 --- Statistical Analysis --- p.70 / Chapter 3.3 --- Results --- p.71 / Chapter 3.3.1 --- JAG2 and FZD3 but not NOTCH4 mRNA were Over -expressed in CRC Cell Lines --- p.71 / Chapter 3.3.2 --- Over-expression of JAG2 and FZD3 Proteins in CRC Tissues --- p.72 / Chapter 3.3.3 --- FZD3 Over-expression Correlated with Tumour-Node Metastasis (TNM) stages --- p.76 / Chapter 3.3.4 --- JAG2 and FZD3 Protein Expression in Colorectal Cancer and Normal Cell Lines --- p.77 / Chapter 3.4 --- Discussions --- p.78 / Chapter Chapter 4 --- Functional Analyses of JAG2 and FZD3 in CRC Cell Lines by RNA Interference --- p.81 / Chapter 4.1 --- Background --- p.81 / Chapter 4.2 --- Materials and Methods --- p.84 / Chapter 4.2.1 --- Transfection of siRNA into CRC Cell Lines --- p.84 / Chapter 4.2.2 --- Cell Proliferation Assay --- p.85 / Chapter 4.2.3 --- Monolayer Scratch Wound Healing Assay --- p.85 / Chapter 4.2.4 --- Matrigel Invasion Assay --- p.86 / Chapter 4.2.5 --- Statistical Analysis --- p.87 / Chapter 4.3 --- Results --- p.88 / Chapter 4.3.1 --- Knockdown of JAG2 and FZD3 Expression by RNA Interference --- p.88 / Chapter 4.3.2 --- Effect of JAG2 Knockdown on Migration of CRC Cell Lines --- p.91 / Chapter 4.3.3 --- JAG2 Knockdown by siRNA 2 Transfection Reduced Migratory Capability of HCT116, DLD-1and HT29 cell lines --- p.94 / Chapter 4.3.4 --- JAG2 Knockdown Impaired the Invasiveness of HCT116 and DLD-1 Cell Lines --- p.97 / Chapter 4.3.5 --- Decreased Migratory and Invasive Capabilities Induced by JAG2 Knockdown was not Due to Reduced Cell Proliferation --- p.100 / Chapter 4.4 --- Discussions --- p.102 / Chapter Chapter 5 --- NOTCH Pathway Inactivation by JAG2 Silencing Reduces Oncogenic Properties of HT29 but not HCT116 andDLD-1 CRC Cell Lines --- p.106 / Chapter 5.1 --- Background --- p.106 / Chapter 5.2 --- Materials and Methods --- p.109 / Chapter 5.2.1 --- CRC Cell lines --- p.109 / Chapter 5.2.2 --- Pharmacological Inhibition of NOTCH signaling by DAPT --- p.109 / Chapter 5.2.3 --- Combination of DAPT Treatment and JAG2 Silencing by siRNA --- p.109 / Chapter 5.2.4 --- Western Blotting --- p.109 / Chapter 5.2.5 --- Cell Proliferation Assay (MTS Assay) --- p.110 / Chapter 5.2.6 --- Monolayer Scratch Wound Healing Assay --- p.110 / Chapter 5.2.7 --- Matrigel Invasion Assay --- p.111 / Chapter 5.2.8 --- Statistical Analysis --- p.111 / Chapter 5.3 --- Results --- p.112 / Chapter 5.3.1 --- JAG2 Silencing Down-regulates Notch Pathway Signaling in CRC Cell Lines --- p.112 / Chapter 5.3.2 --- Inhibition of NOTCH Signaling by DAPT Treatment in CRC Cell Lines --- p.112 / Chapter 5.3.3 --- NOTCH Inhibition Does not Significantly Affect Cell Proliferation in CRC Cell Lines --- p.114 / Chapter 5.3.4 --- Suppression of NOTCH Signaling by DAPT Inhibits Migration in HT29 but not in HCT116 and DLD-1 CRC Cell Lines --- p.115 / Chapter 5.3.5 --- Suppression of NOTCH Signaling by DAPT does not Significantly Affect Invasiveness of HCT116 and DLD-1 CRC Cell Lines --- p.117 / Chapter 5.4 --- Discussions --- p.118 / Chapter Chapter 6 --- JAG2 Knockdown Inhibits Invasion in CRC Cell Lines through Inactivation of Cathepsin K --- p.121 / Chapter 6.1 --- Background --- p.121 / Chapter 6.2 --- Materials and Methods --- p.123 / Chapter 6.2.1 --- Human Tumour Metastasis RT2 Profiler[superscript TM] PCR Array --- p.123 / Chapter 6.2.2 --- Measurement of CTSK Gene expression level by Quantitative Real-Time PCR --- p.123 / Chapter 6.2.3 --- Immunohistochemical Staining (IS) of CTSK in CRC Tissues --- p.124 / Chapter 6.2.4 --- Pharmacological Inhibitior of CTSK in CRC Cell Lines --- p.124 / Chapter 6.2.5 --- Inhibition of CTSK in CRC Cell Lines for Migration Study --- p.124 / Chapter 6.2.6 --- Inhibition of CTSK in CRC Cell Lines for Invasion Study --- p.125 / Chapter 6.2.7 --- Western Blotting --- p.125 / Chapter 6.2.8 --- Statistical Analysis --- p.125 / Chapter 6.3 --- Results --- p.126 / Chapter 6.3.1 --- Identification of Metastasis Related Genes Which were Down-regulated by JAG2 Knockdown in HCT116 Cells --- p.126 / Chapter 6.3.2 --- Validation of Down-regulation of CTSK Gene by JAG2 Knockdown in HCT116 Cell Line by qRT-PCR --- p.126 / Chapter 6.3.3 --- JAG2 Knockdown Reduced Expression of Active CTSK Protein in CRC Cell Lines --- p.128 / Chapter 6.3.4 --- CTSK Protein Expression in CRC Tissue Samples --- p.130 / Chapter 6.3.5 --- Pharmacological Inhibition of CTSK Suppressed Invasiveness of CRC Cell Lines --- p.131 / Chapter 6.3.6 --- Pharmacological Inhibition of CTSK did not Affect Migration of CRC Cell Lines --- p.132 / Chapter 6.4 --- Discussions --- p.133 / Chapter Chapter 7 --- Depletion of JAG2 Inhibits Migration and Invasion in CRC Cell Lines through Inactivation of p38 MAPK/HSP27 Pathway --- p.137 / Chapter 7.1 --- Background --- p.137 / Chapter 7.2 --- Materials and Methods --- p.140 / Chapter 7.2.1 --- Pharmocological Inhibition of p38 MAPK Phosphorylation CRC Cell Lines --- p.140 / Chapter 7.2.2 --- Inhibition of p38 MAPK Phosphorylation for Migration Study in CRC Cell Lines --- p.140 / Chapter 7.2.3 --- Inhibition of p38 MAPK Phosphorylation for Invasion Study in CRC Cell Lines --- p.140 / Chapter 7.2.4 --- Knockdown of STAT3 by RNA interference --- p.141 / Chapter 7.2.5 --- Knockdown of STAT3 for Migration Study in CRC Cell Lines --- p.141 / Chapter 7.2.6 --- Knockdown of STAT3 for Invasion Study in CRC Cell Lines --- p.141 / Chapter 7.2.7 --- Western Blotting --- p.141 / Chapter 7.2.8 --- Statistical Analysis --- p.142 / Chapter 7.3 --- Results --- p.143 / Chapter 7.3.1 --- JAG2 Knockdown Inhibits p38 MAPK / HSP27 Pathway in CRC Cell Lines --- p.143 / Chapter 7.3.2 --- Inhibition of p38 MAPK / HSP27 Signaling Pathway Down-regulated Invasive Capability of CRC Cell Line --- p.145 / Chapter 7.3.3 --- Inhibition of p38 MAPK / HSP27 Signaling Pathway Down-regulated Migration of CRC Cell lines --- p.147 / Chapter 7.3.4 --- JAG2 Knockdown Inactivated p38 MAPK / HSP27 Pathway Independently of NOTCH Pathway in CRC Cell Lines --- p.149 / Chapter 7.3.5 --- JAG2 Knockdown Inhibits STAT3 Activation in CRC Cell Lines --- p.151 / Chapter 7.3.6 --- STAT3 Silencing Reduced Invasive Capability in CRC Cell Lines --- p.152 / Chapter 7.3.7 --- STAT3 Silencing Reduced Migratory Capability in CRC Cell Lines --- p.154 / Chapter 7.3.8 --- Inhibition of p38 MAPK Activity Suppressed STAT3 Activation in HCT116 Cells --- p.156 / Chapter 7.4 --- Discussions --- p.157 / Chapter Chapter 8 --- Conclusions and Future Works --- p.161 / Chapter 8.1 --- Conclusions --- p.161 / Chapter 8.2 --- Future work --- p.163 / References --- p.164 / Chapter Appendix 1 --- List of Figures and Tables --- p.208 / Chapter Appendix 2 --- Abbrevations used in this thesis --- p.212
|
13 |
A novel amplification gene SLC12A5 promotes cell proliferation and tumor metastasis in colorectal cancer / CUHK electronic theses & dissertations collectionJanuary 2014 (has links)
Background & Aims: By whole genome sequencing, we identified for the first time that solute carrier family 12 member 5 (SLC12A5) gene located on chromosome 20q13.12 was amplified in colorectal cancer (CRC). We aimed to determine the amplification status of SLC12A5 and its clinical implication in CRC, and characterize the functional mechanisms of SLC12A5 in colorectal carcinogenesis. / Materials and Methods: Protein expression level of SLC12A5 was evaluated by immunohistochemistry. SLC12A5 amplification was verified by fluorescence in situ hybridization (FISH). The correlations between SLC12A5 expression and clinicopathologic parameters as well as the prognosis impact of SLC12A5 were analyzed in 195 CRC patients. The biological function of SLC12A5 in CRC cell lines were determined by cell viability, colony formation, invasion, migration, flow cytometry and in vivo tumorigenicity assays. Standard tail vein metastatic assay was performed to examine the effect of SLC12A5 in lung metastasis in nude mice. Western blot, luciferase reporter assays and human tumor metastasis PCR array were performed to evaluate SLC12A5 downstream effectors and related pathways. / Results: RT-PCR showed SLC12A5 was readily expressed in 7 of 9 CRC cell lines, but was absent in normal colorectal tissues. The mean protein expression level of SLC12A5 was significantly higher in primary CRCs as compared to their adjacent normal tissues. Amplification of SLC12A5 was detected in 40.8% (78/191) of primary CRCs by FISH, which was positively correlated with its protein overexpression (P < 0.001). Overexpression of SLC12A5 was positively associated with a more advanced TNM stage (P < 0.05). Multivariate Cox regression analysis showed that SLC12A5 overexpression was an independent predictor of poorer survival of CRC patients (P = 0.018). We further tested the biological function of SLC12A5 in human colon cancer cells. Ectopic expression of SLC12A5 in colon cancer cells SW480 and SW1116 increased proliferation and colony formation. Silencing SLC12A5 expression in HCT116 by siRNA had the opposite effects in vitro, and knockdown of SLC12A5 by shRNA significantly inhibited xenograft tumor growth in nude mice. We further revealed that SLC12A5 inhibited apoptosis of colon cancer cells by mediating apoptosis-inducing factor (AIF) and endonuclease G (EndoG) -dependent apoptotic signaling pathway. Moreover, gain-and loss-of-function experiments showed that SLC12A5 enhanced cell invasion and migration in vitro. Knockdown of SLC12A5 by shRNA significantly inhibited lung metastasis in nude mice. SLC12A5 promoted tumor metastasis through regulating key elements of the matrix architecture, such as matrix metallopeptidase and fibronectin. / Conclusion: We have identified a novel amplification gene SLC12A5 which is overexpressed in CRC. SLC12A5 may be an independent prognostic marker for CRC and may play a pivotal oncogenic role in colorectal carcinogenesis by inhibiting apoptosis and promoting metastasis. / 背景和目的:通過對結直腸癌進行全基因組測序,我們首次發現位於染色體20q13.12的SLC12A5基因在結直腸中擴增。本研究旨在探索SLC12A5在結直腸癌中的擴增情況和臨床意義,并進一步研究SLC12A5在結直腸癌發生發展中的作用機制。 / 材料和方法:採用免疫组化方法檢測SLC12A5的蛋白表达水平。應用熒光原位雜交方法驗證SLC12A5基因的擴增情況。在195例結直腸癌患者中对SLC12A5表达與临床病理關係及其對預後的影響其进行分析。通过檢測細胞活力、細胞集落形成實驗、侵襲實驗、遷移實驗、流式細胞術和體內成瘤實驗以研究SLC12A5在結直腸癌中的生物学功能。進而通過免疫印跡、熒光素酶報告實驗和人腫瘤轉移的PCR陣列,探索SLC12A5調控的基因和相关途径。 / 结果:我們採用RT-PCR方法檢測SLC12A5在9株結直腸癌細胞株的表達情況,SLC12A5在7株結直腸癌細胞株中穩定表達,但是在正常大腸組織中表達沉默。SLC12A5在結直腸中的平均蛋白表達水平顯著高於其鄰近的正常組織。通過熒光原位雜交方法,在40.8% (78/ 191)的結直腸癌中檢測到SLC12A5的擴增,該基因的擴增與其蛋白高表達水平呈正相關關係。SLC12A5高表達水平跟晚期TNM分期密切相關(P <0.05)。多因素Cox回歸分析表明,SLC12A5高表達是結直腸癌患者較差的生存的獨立預測因子(P = 0.018)。我們進一步在人結腸癌細胞株中檢測SLC12A5的生物功能。在結腸癌細胞SW480和SW1116中過度表達SLC12A5促進細胞增殖和集落形成。siRNA敲低HCT116 細胞SLC12A5的表達在體外實驗中有相反的效果。此外,shRNA敲低SLC12A5的表達顯著抑制裸鼠移植瘤的生長。我們進一步發現,SLC12A5通過介導凋亡誘導因子(AIF)和核酸內切酶G(EndoG)-依賴的細胞凋亡信號轉導通路抑制結腸癌細胞的凋亡。此外,功能獲得性和功能缺失性的體外實驗表明,SLC12A5促進腫瘤細胞的侵襲和遷移。尾靜脈注射實驗表明shRNA敲低SLC12A5的表達顯著抑制裸鼠肺轉移。SLC12A5通過調節基質結構的關鍵因子,如基質金屬蛋白酶和纖維連接蛋白,促進腫瘤轉移。 / 结论:我們發現了一個新的擴增基因SLC12A5,該基因在結直腸癌中高表達。SLC12A5是結直腸癌的一個獨立的預後標誌物。SLC12A5通過抑制細胞凋亡和促進腫瘤轉移,在結直腸癌的發生發展中起了舉足輕重的致癌作用。 / Xu, Lixia. / Thesis Ph.D. Chinese University of Hong Kong 2014. / Includes bibliographical references (leaves 107-120). / Abstracts also in Chinese. / Title from PDF title page (viewed on 05, October, 2016). / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only.
|
14 |
Expression of the DNA mismatch repair protein MLH1 in serrated polyps of the colon: an immunohistochemical studyChan, Ling-fung., 陳凌鋒. January 2005 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
|
15 |
Genome-wide association study on colorectal cancer in the Hong Kong Chinese populationChoi, Siu-chung, 蔡兆聰 January 2012 (has links)
Colorectal cancer (CRC) is the second most common cancer in Hong Kong. While high-penetrance germline mutations account for up to 6% of cases, much of the variation in genetic risk may be attributable to multiple low-penetrance variants. Previous genome wide association studies (GWAS) have identified a number of CRC susceptibility alleles in Caucasian populations. Our GWAS investigated the association between genetic variants with CRC risk in the Han Chinese population in Hong Kong. In Stage I, genomic DNA samples from 455 female Chinese CRC subjects were genotyped using the Illumina 610 Quad SNP chip. Association analysis was performed on 439 cases and 771 general population female controls recruited for a study on bone mineral density. Population stratification was examined through principal components analysis using EIGENSTRAT version 2.0. From the association results, 46 SNPs (Group 1) were selected for follow-up replication (Stage II), together with 10 SNPs (Group 2) from previous GWAS studies. Genomic DNA samples from 3,571 Chinese subjects were genotyped using Sequenom MassARRAY system. Association analysis was performed on 1,505 cases and 1,452 controls. 5 SNPs (rs835378, rs2652007, rs2139273, rs2139273 and rs9286410) exceeded the genome-wide significance level in stage I, although none replicated in Stage 2, suggesting genotyping error. Results from stage II showed that the three most significant SNP were among those selected from the previous studies, yet their significance levels in Stage I were very weak . None of the SNPs selected from Stage I was significant at p<0.01 in Stage 2. Two composite scores of genetic susceptibility, one for each group of SNPs, were calculated in stage II genotype data, as the total number of high-risk alleles (according to the direction of effect in Stage I results or previous GWAS) present in an individual. Both composite scores were significantly associated with CRC risk in Stage 2 (Group 1, p=2.38 x 10-5, beta=0.046, SE=0.012; Group 2 p=1.06 x 10-7, beta=0.10, SE=0.019), suggesting that while we had insufficient power to confirm individual SNPs identified in our GWAS and the previous GWAS, these findings indicate that the SNP sets selected from Stage I results, as well as those selected from previous GWAS, contain SNPs with genuine effects on CRC risk. One SNP, rs10795668 (OR = 0.79 [CI] 95%:0.71 – 0.87 p=3.78 x 10-6), was significantly associated with CRC risk in Stage II after adjustment for multiple testing. Two further SNPs, rs6983267 and rs4939827, also achieved suggestive p-values in Stage II. All these SNPs were selected from previous GWAS in the Caucasian population, demonstrating that shared genetic factors operate for CRC in diverse populations. / published_or_final_version / Psychiatry / Master / Master of Philosophy
|
16 |
Identification of polycomb group protein CBX8 as a novel tumor suppressor in human colorectal cancerLi, Hung-sing, 李鴻陞 January 2014 (has links)
Polycomb group (PcG) proteins governs the regulation of diverse cellular functions, such as cell fate decision, cell cycle progression, maintenance of embryonic stem cell pluripotency, and DNA damage repair. Although aberrant expression of PcG proteins has been frequently reported in different cancer types, CBX8 is one of the least studied PcG family members in cancer. Recently, a study showed that forced expression of CBX8 in normal human and mouse fibroblasts demonstrated that cells could bypass senescence via INK4a-ARF repression; while another report demonstrated that CBX8 was involved in MLL-AF9-linked leukemogenesis. Despite accumulating evidence on CBX8-related carcinogenic functions, the role of CBX8 in solid cancers has not been investigated thus far. This study is therefore initiated to investigate and establish the functional role of CBX8 in colorectal cancer.
In this study, expression of CBX8 in 121 pairs of human CRC samples was analyzed by immunohistochemistry; and data were correlated with different clinicopathological parameters. To evaluate the functional effects of CBX8, CBX8 overexpressed and downregulated clones were established from three CRC cell lines. The in vitro effects of CBX8 on cell proliferation, cell cycle progression and apoptosis profiles were investigated; and the effects of CBX8 on tumorigenicity in vivo were further demonstrated in mice xenograft models.
The results showed that CBX8 expression was downregulated or loss in approximately 48.8% of human colorectal tumors, and downregulated or loss of CBX8 expression were mainly observed in tumors with intermediate to later stages (stage II to IV). Moreover, expression of CBX8 showed a significant inverse correlation with colorectal tumor sizes (P < 0.0001). Ectopic expression of CBX8 in CRC cell lines resulted in inhibition of cell proliferation, clonogenic ability and anchorage-independent growth, which are hallmarks of tumorigenesis. Conversely, downregulation of CBX8 promoted proliferation and clonogenic ability. Moreover, it was found that restoring CBX8 expression could induce G0/G1 arrest of cell cycle. The tumor suppressive role of CBX8 in colorectal cells was further demonstrated in vivo through subcutaneous and orthotropic mice tumor models; followed by immuno-staining of the proliferation marker Ki-67. To unveil the possible mechanisms behind the tumor suppressing effects of CBX8, two signalling pathways commonly engaged in CRC were evaluated. At least part of the effects could be attributed to the mediation of MAPK signaling pathway; whereas the Wnt signalling was not affected by CBX8.
This study demonstrated for the first time the loss of CBX8 expression in intermediate and late stage tumors, and was the first to report the tumor suppressing ability of CBX8 in solid cancers. The effects of CBX8 in this study were different to the functional implications reported in the current literature. This functional divergence in distinct cell types suggested a dynamic role of CBX8 depending on specific cellular context. / published_or_final_version / Surgery / Master / Master of Philosophy
|
17 |
Characterization of long non-coding RNA H19 in epithelial to mesenchymal transition: 長非編碼RNA H19在上皮間充質轉化中的功能探究 / 長非編碼RNA H19在上皮間充質轉化中的功能探究 / CUHK electronic theses & dissertations collection / Characterization of long non-coding RNA H19 in epithelial to mesenchymal transition: Chang fei bian ma RNA H19 zai shang pi jian chong zhi zhuan hua zhong de gong neng tan jiu / Chang fei bian ma RNA H19 zai shang pi jian chong zhi zhuan hua zhong de gong neng tan jiuJanuary 2014 (has links)
Colorectal cancer (CRC), with an estimated 1.2 million new cases annually, is the third leading cause of cancer incidence and death worldwide. Generally, the majority of CRC patients are diagnosed at the advanced stages with poor prognosis and unfavorable response to multiple therapeutic drugs. In spite of increasing knowledge of the molecular mechanism for the tumorigenesis in CRC patients, the translation from basic science into clinical therapy has been limited for quite a long time. In order to develop novel treatment strategies against CRC, intensive and extensive attempts have been made in the past decades. / The epithelial to mesenchymal transition (EMT) is a multi-step process characterized by the loss of cell polarity, decreased cell-cell adhesion as well as enhanced migration and invasion capacity. It is well documented that EMT is essential for a variety of cellular biological events ranging from embryogenesis to tumor progression. The field of lncRNA is developing rapidly and currently it is one of the most intensively studied fields in the biomedical sciences. Emerging evidence indicates that the majority of human genome encodes thousands of non-protein-coding RNA transcripts, nevertheless, the function of long non-coding RNAs (lncRNAs) in orchestrating EMT progression remains elusive. Historically, the lncRNA H19 was the first identified imprinted non-coding RNA transcript in human, and the H19/IGF2 locus acted as an ideal paradigm for the investigation of genomic imprinting genes. In recent years, the expression profiling and functional characterization of the H19 gene in a variety of human diseases has been extensively studied. / In our studies, H19 was characterized as a novel regulator of EMT in colon cancer. We first observed significant mesenchymal characteristics in the methotrexate-resistant HT-29 cells. Interestingly, significant upregulation of H19 was observed in mesenchymal-like MTX resistant HT-29 cells. We subsequently demonstrated that after treatment of TGF-β1, one of the most widely used EMT inducers, H19 presented dramatic increase during the EMT progression. To further investigate the functional role of H19 in EMT, we generated the stable cell lines overexpressing H19 in colon cancer cells using retroviral infection. Stable overexpression of H19 significantly promoted EMT progression in two epithelial colon cancer cell lines HT-29 and HCT-116. However, overexpression of H19 did not affect cell proliferation as well as cell cycle progression. Further proteomics studies screened out that ectopic expression of H19 upregulated the protein level of Vimentin, a vital biomarker for mesenchymal cells. By using the bioinformatics study in combination with luciferase reporter assays, we demonstrated that H19 potentiated the expression of several core marker genes essential for mesenchymal cells by serving as a competing endogenous RNA(ceRNA), which builds up the missing link between the regulatory miRNA network and EMT progression. According to the results from xenograft tumor model and soft agar assay, stable expression of H19 reinforced the in vitro and in vivo tumor growth. Moreover, the investigation of clinical specimens verified that H19 RNA level was significantly increased in colon cancer tissues compared with corresponding adjacent normal tissues. Taken together, the above observations imply that the lncRNA H19, by acting as a competing endogenous RNA, is an important regulator which tightly modulated the expression of multiple important genes involved in EMT and it could probably serve as a novel therapeutic target against colon cancer. / 大腸癌每年有一百二十萬新增個案,是世界第三大癌症殺手。通常情況下,大部分大腸癌病人發現時已經處於晚期,該時期的癌症病人對多種臨床治療藥物已無法治愈。盡管關於大腸癌發病的分子生物學機制已經不斷完善,但如何從基礎研究轉化為臨床治療手段在很長一段時間內不可實現。為了進一步研究新的抗擊大腸癌治療手段,廣泛且深入的研究已經不斷開展。 / 上皮間充質轉化是一個多步驟的過程,該過程的典型特徵為失去細胞的極性,細胞間粘連減弱以及細胞爬行遷移能力的不斷加強。目前科學家已經知道上皮間充質轉化對於從胚胎發育到腫瘤發展都起著重要的作用。近年來,長非編碼RNA的研究不斷快速發展,已然成為醫學研究中最激烈的領域之一。眾多證據表明人體基因組編碼數以千計不編碼蛋白質的RNA轉錄體。然而,這些RNA轉錄體在上皮間充質轉化中的功能依然所知甚少。長非編碼RNA H19是人體內第一個被鑒別出來參與到基因印記的非編碼RNA。資料表明H19/IGF2位點是一個非常理想的研究基因印記的位點。近年來,H19在眾多癌症中的表達以及功能學研究已不斷湧現,同時也不斷取得令人鼓舞的研究成果。 / 在我們的研究中,H19被鑒定為大腸癌裏上皮間充質轉化過程中一個重要的參與者。通過研究甲氨蝶呤耐藥大腸癌HT-29細胞株,我們發現該HT-29耐藥細胞株有著顯著的間充質細胞特性。有趣的是,H19在該細胞株中有著顯著升高。我們隨後用經典的上皮間充質轉化誘導劑TGF-β1處理兩株大腸癌細胞,處理後H19亦有著顯著升高。為了進一步研究H19在上皮間充質轉化,通過使用逆轉錄病毒,我們建立H19的穩定表達細胞株。穩定表達H19顯著地促進了HT-29以及SW620大腸癌細胞株的上皮間充質轉化。然後,高水平表達(過表達)H19並不影響細胞的生長以及細胞周期的進程。進一步的蛋白質組學研究表明,過表達H19能促進間充質細胞一個重要標記基因Vimentin的表達。通過生物信息學以及熒光素酶報告基因實驗,我們證明了H19通過其競爭內源性RNA的作用,能夠促進間充質細胞所需的幾個重要基因的表達。該發現建立起了miRNA網絡以及上皮間充質轉化進程的交流網絡。通過異位移植以及軟瓊脂實驗,我們發現過表達H19能夠促進腫瘤細胞的生長。而在臨床大腸癌病人組織中,我們更發現H19在大腸癌病人組織中高表達。綜上所述,我們的結果證明H19這一長非編碼RNA,能夠通過其競爭內源性RNA的作用機制,從而調控上皮間充質轉化過程中的關鍵基因。同時H19亦有可能成為治療大腸癌的臨床新靶點。 / Liang, Weicheng. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2014. / Includes bibliographical references (leaves 95-124). / Abstracts also in Chinese. / Title from PDF title page (viewed on 24, October, 2016). / Liang, Weicheng.
|
18 |
Promoter hypermethylation of tumor related genes in the progression of colorectal neoplasia.January 2005 (has links)
Bai Hsing Chen. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 89-94). / Abstracts in English and Chinese. / Acknowledgments --- p.ii / Publication --- p.iii / List of Abbreviations --- p.iv / List of Tables --- p.v / List of Figures --- p.vi / Abstract --- p.vii / 摘要 --- p.x / Table of Contents --- p.xii / Chapter Chapter 1 --- INTRODUCTION / Chapter 1.1 --- Molecular Biology in Cancer Development --- p.2 / Chapter 1.1.1 --- Cell Cycle and Cancer --- p.2 / Chapter 1.1.2 --- Oncogenes and Tumor Suppressor Genes --- p.4 / Chapter 1.1.3 --- Epigenetic Alteration in Tumor Cells --- p.6 / Chapter 1.2 --- Colorectal Cancer Development --- p.9 / Chapter 1.2.1 --- Epidemiology of Colorectal Cancer --- p.9 / Chapter 1.2.2 --- Adenoma-Carcinoma Sequence --- p.11 / Chapter 1.2.2.1 --- Hyperplastic (metaplastic) Polyps --- p.11 / Chapter 1.2.2.2 --- Aberrant Crypt Foci (ACF) --- p.13 / Chapter 1.2.2.3 --- Adenomas --- p.13 / Chapter 1.2.2.4 --- Serrated adenomas --- p.15 / Chapter 1.2.2.5 --- Colorectal Carcinomas --- p.16 / Chapter 1.2.3 --- Genetic alterations in CRC --- p.18 / Chapter 1.2.4 --- Epigenetic alterations in CRC --- p.21 / Chapter 1.2.5 --- Staging of Colorectal Cancer --- p.23 / Chapter 1.3 --- Hypothesis --- p.25 / Chapter 1.4 --- Aim of Study --- p.26 / Chapter Chapter 2 --- MATERIALS and METHODES / Chapter 2.1 --- Patient Populations --- p.28 / Chapter 2.2 --- Microdissection and Immunohistochemistry --- p.29 / Chapter 2.3 --- DNA Isolation and Modification --- p.31 / Chapter 2.3.1 --- DNA Extraction from Microdissected Tissues --- p.31 / Chapter 2.3.2 --- DNA Extraction from Frozen Biopsy --- p.31 / Chapter 2.3.3 --- Bisulfite Modification of DNA --- p.32 / Chapter 2.4 --- Detection of K-ras Mutation --- p.33 / Chapter 2.5 --- Methylation-specific PCR (MSP) --- p.36 / Chapter 2.6 --- Bisulfite DNA Sequencing --- p.42 / Chapter 2.7 --- Statistical analysis --- p.44 / Chapter Chapter 3 --- RESULTS / Chapter 3.1 --- Promoter Hypermethylation of Tumor Related Genes in the Progression of Colorectal Neoplasia --- p.46 / Chapter 3.1.1 --- Clinico-Pathological parameters --- p.46 / Chapter 3.1.2 --- "Frequencies of Promoter Hypermethylation in Colorectal Cancers, Adenomas and Normal Colonic Tissues" --- p.47 / Chapter 3.1.3 --- Promoter Hypermethylation in Multiple Genes --- p.50 / Chapter 3.1.4 --- Promoter Hypermethylation in Advanced vs. Non-advanced Adenoma --- p.50 / Chapter 3.1.5 --- Methylation Patterns in Paired Adjacent Tissues from Cancer Patients --- p.53 / Chapter 3.1.6 --- Immunohistochemistry --- p.55 / Chapter 3.1.7 --- K-ras mutation --- p.61 / Chapter 3.1.8 --- Clinicopathological Correlations with Promoter Hypermethylation --- p.64 / Chapter 3.2 --- DNA Methylation Spread within HLTF CpG Island in Colorectal neoplasia --- p.67 / Chapter Chapter 4 --- DISCUSSION / Chapter 4.1 --- Methylation is an early event in Colorectal Carcinogenesis --- p.72 / Chapter 4.1.1 --- Methylation is frequently detected in both adenoma and carcinoma --- p.74 / Chapter 4.1.2 --- Concurrent methylation in multiple genes --- p.76 / Chapter 4.1.3 --- Methylation in advanced and non-advanced colorectal adenomas --- p.76 / Chapter 4.1.4 --- Relationship between K-ras mutation and methylation --- p.78 / Chapter 4.1.5 --- Methylation in adjacent tissues --- p.80 / Chapter 4.2 --- DNA Methylation Spread in HLTF gene --- p.81 / Chapter 4.2.1 --- HLTF is Frequently Methylated in Gastrointestinal Neoplasm --- p.82 / Chapter 4.2.2 --- Methylation Spread Patterns in Cancers and Adenomas --- p.83 / Chapter 4.2.3 --- Age Dependent Methylation Spread --- p.85 / Chapter Chapter 5 --- CONCLUSION --- p.87 / References --- p.89
|
19 |
Molecular genetics of colorectal cancer and its relevance to epidemiology in Chinese populationYuen, Siu-tsan, Thomas., 袁兆燦. January 2003 (has links)
published_or_final_version / abstract / toc / Medicine / Master / Doctor of Medicine
|
Page generated in 0.0916 seconds