Spelling suggestions: "subject:"recursive leastsquares"" "subject:"recursive least0squares""
1 |
Numerical properties of adaptive recursive least-squares (RLS) algorithms with linear constraints.Huo, Jia Q. January 1999 (has links)
Adaptive filters have found applications in many signal processing problems. In some situations, linear constraints are imposed on the filter weights such that the filter is forced to exhibit a certain desired response. Several algorithms for linearly constrained least-squares adaptive filtering have been developed in the literature. When implemented with finite precision arithmetic, these algorithms are inevitably subjected to rounding errors. It is essential to understand how these algorithms react to rounding errors.In this thesis, the numerical properties of three linearly constrained least-squares adaptive filtering algorithms, namely, the linearly constrained fast least algorithm, the linear systolic array for MVDR beamforming and the linearly constrained QRD-RLS algorithm, are studied. It is shown that all these algorithms can be separated into a constrained part and an unconstrained part. The numerical properties of unconstrained least-squares algorithms (i.e., the unconstrained part of the linearly constrained algorithms under study) are reviewed from the perspectives of error propagation, error accumulation and numerical persistency. It is shown that persistent excitation and sufficient numerical resolution are needed to ensure the stability of the CRLS algorithm, while the QRD-RLS algorithm is unconditionally stable. The numerical properties of the constrained algorithms are then examined. Based on the technique of how the constraints are applied, these algorithms can be grouped into two categories. The first two algorithms admit a similar structure in that the unconstrained parts preceed the constrained parts. Error propagation analysis shows that this structure gives rise to unstable error propagation in the constrained part. In contrast, the constrained part of the third algorithm preceeds the unconstrained part. It is shown that this algorithm gives an ++ / exact solution to a linearly constrained least-squares adaptive filtering problem with perturbed constraints and perturbed input data. A minor modification to the constrained part of the linearly constrained QRD-RLS algorithm is proposed to avoid a potential numerical difficulty due to the Gaussian elimination operation employed in the algorithm.
|
2 |
Random Matrix Theory Analysis of Fixed and Adaptive Linear ReceiversPeacock, Matthew James McKenzie January 2006 (has links)
Doctor of Philosophy (PhD) / This thesis considers transmission techniques for current and future wireless and mobile communications systems. Many of the results are quite general, however there is a particular focus on code-division multiple-access (CDMA) and multi-input multi-output (MIMO) systems. The thesis provides analytical techniques and results for finding key performance metrics such as signal-to-interference and noise power ratios (SINR) and capacity. This thesis considers a large-system analysis of a general linear matrix-vector communications channel, in order to determine the asymptotic performance of linear fixed and adaptive receivers. Unlike many previous large-system analyses, these results cannot be derived directly from results in the literature. This thesis considers a first-principles analytical approach. The technique unifies the analysis of both the minimum-mean-squared-error (MMSE) receiver and the adaptive least-squares (ALS) receiver, and also uses a common approach for both random i.i.d. and random orthogonal precoding. The approach is also used to derive the distribution of sums and products of free random matrices. Expressions for the asymptotic SINR of the MMSE receiver are derived, along with the transient and steady-state SINR of the ALS receiver, trained using either i.i.d. data sequences or orthogonal training sequences. The results are in terms of key system parameters, and allow for arbitrary distributions of the power of each of the data streams and the eigenvalues of the channel correlation matrix. In the case of the ALS receiver, we allow a diagonal loading constant and an arbitrary data windowing function. For i.i.d. training sequences and no diagonal loading, we give a fundamental relationship between the transient/steady-state SINR of the ALS and the MMSE receivers. We demonstrate that for a particular ratio of receive to transmit dimensions and window shape, all channels which have the same MMSE SINR have an identical transient ALS SINR response. We demonstrate several applications of the results, including an optimization of information throughput with respect to training sequence length in coded block transmission.
|
3 |
Vehicle Ahead Property Estimation in Heavy Duty Vehicles / Skattning av egenskaper hos framförvarande tungt fordonFelixson, Henrik January 2014 (has links)
No description available.
|
4 |
Random Matrix Theory Analysis of Fixed and Adaptive Linear ReceiversPeacock, Matthew James McKenzie January 2006 (has links)
Doctor of Philosophy (PhD) / This thesis considers transmission techniques for current and future wireless and mobile communications systems. Many of the results are quite general, however there is a particular focus on code-division multiple-access (CDMA) and multi-input multi-output (MIMO) systems. The thesis provides analytical techniques and results for finding key performance metrics such as signal-to-interference and noise power ratios (SINR) and capacity. This thesis considers a large-system analysis of a general linear matrix-vector communications channel, in order to determine the asymptotic performance of linear fixed and adaptive receivers. Unlike many previous large-system analyses, these results cannot be derived directly from results in the literature. This thesis considers a first-principles analytical approach. The technique unifies the analysis of both the minimum-mean-squared-error (MMSE) receiver and the adaptive least-squares (ALS) receiver, and also uses a common approach for both random i.i.d. and random orthogonal precoding. The approach is also used to derive the distribution of sums and products of free random matrices. Expressions for the asymptotic SINR of the MMSE receiver are derived, along with the transient and steady-state SINR of the ALS receiver, trained using either i.i.d. data sequences or orthogonal training sequences. The results are in terms of key system parameters, and allow for arbitrary distributions of the power of each of the data streams and the eigenvalues of the channel correlation matrix. In the case of the ALS receiver, we allow a diagonal loading constant and an arbitrary data windowing function. For i.i.d. training sequences and no diagonal loading, we give a fundamental relationship between the transient/steady-state SINR of the ALS and the MMSE receivers. We demonstrate that for a particular ratio of receive to transmit dimensions and window shape, all channels which have the same MMSE SINR have an identical transient ALS SINR response. We demonstrate several applications of the results, including an optimization of information throughput with respect to training sequence length in coded block transmission.
|
5 |
Completely Recursive Least Squares and Its ApplicationsBian, Xiaomeng 02 August 2012 (has links)
The matrix-inversion-lemma based recursive least squares (RLS) approach is of a recursive form and free of matrix inversion, and has excellent performance regarding computation and memory in solving the classic least-squares (LS) problem. It is important to generalize RLS for generalized LS (GLS) problem. It is also of value to develop an efficient initialization for any RLS algorithm.
In Chapter 2, we develop a unified RLS procedure to solve the unconstrained/linear-equality (LE) constrained GLS. We also show that the LE constraint is in essence a set of special error-free observations and further consider the GLS with implicit LE constraint in observations (ILE-constrained GLS).
Chapter 3 treats the RLS initialization-related issues, including rank check, a convenient method to compute the involved matrix inverse/pseudoinverse, and resolution of underdetermined systems. Based on auxiliary-observations, the RLS recursion can start from the first real observation and possible LE constraints are also imposed recursively. The rank of the system is checked implicitly. If the rank is deficient, a set of refined non-redundant observations is determined alternatively.
In Chapter 4, base on [Li07], we show that the linear minimum mean square error (LMMSE) estimator, as well as the optimal Kalman filter (KF) considering various correlations, can be calculated from solving an equivalent GLS using the unified RLS.
In Chapters 5 & 6, an approach of joint state-and-parameter estimation (JSPE) in power system monitored by synchrophasors is adopted, where the original nonlinear parameter problem is reformulated as two loosely-coupled linear subproblems: state tracking and parameter tracking. Chapter 5 deals with the state tracking which determines the voltages in JSPE, where dynamic behavior of voltages under possible abrupt changes is studied. Chapter 6 focuses on the subproblem of parameter tracking in JSPE, where a new prediction model for parameters with moving means is introduced. Adaptive filters are developed for the above two subproblems, respectively, and both filters are based on the optimal KF accounting for various correlations. Simulations indicate that the proposed approach yields accurate parameter estimates and improves the accuracy of the state estimation, compared with existing methods.
|
6 |
On the regularization of the recursive least squares algorithm. / Sobre a regularização do algoritmo dos mínimos quadrados recursivos.Tsakiris, Manolis 25 June 2010 (has links)
This thesis is concerned with the issue of the regularization of the Recursive Least-Squares (RLS) algorithm. In the first part of the thesis, a novel regularized exponentially weighted array RLS algorithm is developed, which circumvents the problem of fading regularization that is inherent to the standard regularized exponentially weighted RLS formulation, while allowing the employment of generic time-varying regularization matrices. The standard equations are directly perturbed via a chosen regularization matrix; then the resulting recursions are extended to the array form. The price paid is an increase in computational complexity, which becomes cubic. The superiority of the algorithm with respect to alternative algorithms is demonstrated via simulations in the context of adaptive beamforming, in which low filter orders are employed, so that complexity is not an issue. In the second part of the thesis, an alternative criterion is motivated and proposed for the dynamical regulation of regularization in the context of the standard RLS algorithm. The regularization is implicitely achieved via dithering of the input signal. The proposed criterion is of general applicability and aims at achieving a balance between the accuracy of the numerical solution of a perturbed linear system of equations and its distance from the analytical solution of the original system, for a given computational precision. Simulations show that the proposed criterion can be effectively used for the compensation of large condition numbers, small finite precisions and unecessary large values of the regularization. / Esta tese trata da regularização do algoritmo dos mínimos-quadrados recursivo (Recursive Least-Squares - RLS). Na primeira parte do trabalho, um novo algoritmo array com matriz de regularização genérica e com ponderação dos dados exponencialmente decrescente no tempo é apresentado. O algoritmo é regularizado via perturbação direta da inversa da matriz de auto-correlação (Pi) por uma matriz genérica. Posteriormente, as equações recursivas são colocadas na forma array através de transformações unitárias. O preço a ser pago é o aumento na complexidade computacional, que passa a ser de ordem cúbica. A robustez do algoritmo resultante ´e demonstrada via simula¸coes quando comparado com algoritmos alternativos existentes na literatura no contexto de beamforming adaptativo, no qual geralmente filtros com ordem pequena sao empregados, e complexidade computacional deixa de ser fator relevante. Na segunda parte do trabalho, um critério alternativo ´e motivado e proposto para ajuste dinâmico da regularização do algoritmo RLS convencional. A regularização é implementada pela adição de ruído branco no sinal de entrada (dithering), cuja variância é controlada por um algoritmo simples que explora o critério proposto. O novo critério pode ser aplicado a diversas situações; procura-se alcançar um balanço entre a precisão numérica da solução de um sistema linear de equações perturbado e sua distância da solução do sistema original não-perturbado, para uma dada precisão. As simulações mostram que tal critério pode ser efetivamente empregado para compensação de números de condicionamento (CN) elevados, baixa precisão numérica, bem como valores de regularização excessivamente elevados.
|
7 |
Previsão de níveis fluviais em tempo atual com modelo de regressão adaptativo: aplicação na bacia do rio UruguaiMoreira, Giuliana Chaves January 2016 (has links)
Este trabalho avaliou o potencial da aplicação da técnica recursiva dos mínimos quadrados (MQR) para o ajuste em tempo atual dos parâmetros de modelos autorregressivos com variáveis exógenas (ARX), as quais são constituídas pelos níveis de montante para melhorar o desempenho das previsões de níveis fluviais em tempo atual. Três aspectos foram estudados em conjunto: variação do alcance escolhido para a previsão, variação da proporção da área controlada em bacias a montante e variação da área da bacia da seção de previsão. A pesquisa foi realizada em três dimensões principais: a) metodológica (sem recursividade; com recursividade; com recursividade e fator de esquecimento); b) temporal (6 alcances diferentes: 10, 24, 34, 48, 58 e 72 horas); e c) espacial (variação da área controlada da bacia e da área da bacia definida pela seção de previsão). A área de estudo escolhida para essa pesquisa foi a bacia do rio Uruguai com exutório no posto fluviométrico de Uruguaiana (190.000 km²) e as suas sub-bacias embutidas de Itaqui (131.000 km²), Passo São Borja (125.000km²), Garruchos (116.000 km²), Porto Lucena (95.200 km²), Alto Uruguai (82.300 km²) e Iraí (61.900 km²). Os dados de níveis fluviométricos, com leituras diárias às 07:00 e às 17:00 horas, foram fornecidos pela Companhia de Pesquisa de Recursos Minerais (CPRM), sendo utilizados os dados de 1/1/1991 a 30/6/2015. Para a análise de desempenho dos modelos, foi aplicado como estatística de qualidade o coeficiente de Nash-Sutcliffe (NS) e o quantil 0,95 dos erros absolutos (EA(0,95): erro que não foi ultrapassado com a frequência de 0,95). Observou-se que os erros EA(0,95) dos melhores modelos obtidos para cada bacia sempre aumentam com a redução da área controlada, ou seja, a qualidade das previsões diminui com o deslocamento da seção de controle de jusante para montante. O ganho na qualidade das previsões com a utilização dos recursos adaptativos torna-se mais evidente, especialmente quando observam-se os valores de EA(0,95), pois esta estatística é mais sensível, com diferenças maiores em relação ao coeficiente NS. Além disso, este é mais representativo para os erros maiores, que ocorrem justamente durante os eventos de inundações. De modo geral, foi observado que, à medida que diminui a área da bacia, é possível obter previsões com alcances cada vez menores. Porém a influência do tamanho da área controlada de bacias a montante melhora o desempenho de bacias menores quando se observam principalmente os erros EA(0,95). Por outro lado, se a proporção da bacia controlada de montante já é bastante grande, como é o caso das alternativas 1 e 2 utilizadas para previsão em Itaqui (entre 88,5% e 95,4 %, respectivamente), os recursos adaptativos não fazem muita diferença na obtenção de melhores resultados. Todavia, quando se observam bacias com menores áreas de montante controladas, como é o caso de Porto Lucena para a alternativa 2 (65% de área controlada), o ganho no desempenho dos modelos com a utilização dos recursos adaptativos completos (MQR+f.e: mínimos quadrados recursivos com fator de esquecimento) torna-se relevante. / This study evaluated the potential of the application of the recursive least squares technique (RLS) to adjust in real time the model parameters of the autoregressive models with exogenous variables (ARX), which consists of the upstream levels, to improve the performance of the forecasts of river levels in real time. Three aspects were studied jointly: the variation of the lead time chosen for the forecast, the variation in the proportion of controlled area in upstream basins and variation in the area of forecasting section of the basin. The research was conducted in three main dimensions: a) methodological (without recursion; with recursion; with recursion and forgetting factor); b) temporal (6 different lead times: 10, 24, 34, 48, 58 and 72 hours); and c) spatial (variation in the controlled area of the basin and the area of the basin defined by the forecast section). The study area chosen for this research was the Uruguay River basin with its outflow at the river gage station of Uruguaiana (190,000 km²) and its entrenched sub-basins in Itaqui (131,000 km²), Passo São Borja (125,000 km²), Garruchos (116,000 km²), Porto Lucena (95,200 km²), Alto Uruguai (82,300 km²), and Iraí (61,900 km²). The river levels data, with daily readings at 7am and 5pm, were provided by the Company of Mineral Resources Research (CPRM), with the data used from January 1, 1991 to June 30, 2015. We applied the Nash-Sutcliffe coefficient (NS) and the quantile 0.95 of absolute errors (EA(0,95): error has not been exceeded at the rate of 0.95) for the analysis of models performances. We observed that the errors EA(0.95) of the best models obtained for each basin always increase with the reduction of the controlled area then the quality of the forecasts decreases with displacement of the downstream control section upstream. The gain in quality of the forecasts with the use of adaptive resources becomes more evident especially when the observed values of EA(0.95) as this statistic is more sensitive with greater differences in relation to the Nash-Sutcliffe Coefficient (NS). Moreover, this is most representative for larger errors which occur precisely during flooding events. In general, we observed that, as much as the area of the basin decreases, it is possible to obtain forecasts with smaller lead times, but the influence of the size of the area controlled upstream basins improves the performance of smaller basins when observing, especially the errors EA (0.95). However, if the proportion of the upstream of controlled basin is already quite large - as in the case of the alternatives 1 and 2 used for forecast in Itaqui (between 88.5% and 95.4%, respectively) - the adaptive resources do not differ too much in getting better results. However, when observing basins with smaller areas controlled upstream - as is the case of Porto Lucena to alternative 2 (65% controlled area) - the performance gain of the models with the use of the complete adaptive resources (MQR+f.e.) becomes relevant.
|
8 |
On the regularization of the recursive least squares algorithm. / Sobre a regularização do algoritmo dos mínimos quadrados recursivos.Manolis Tsakiris 25 June 2010 (has links)
This thesis is concerned with the issue of the regularization of the Recursive Least-Squares (RLS) algorithm. In the first part of the thesis, a novel regularized exponentially weighted array RLS algorithm is developed, which circumvents the problem of fading regularization that is inherent to the standard regularized exponentially weighted RLS formulation, while allowing the employment of generic time-varying regularization matrices. The standard equations are directly perturbed via a chosen regularization matrix; then the resulting recursions are extended to the array form. The price paid is an increase in computational complexity, which becomes cubic. The superiority of the algorithm with respect to alternative algorithms is demonstrated via simulations in the context of adaptive beamforming, in which low filter orders are employed, so that complexity is not an issue. In the second part of the thesis, an alternative criterion is motivated and proposed for the dynamical regulation of regularization in the context of the standard RLS algorithm. The regularization is implicitely achieved via dithering of the input signal. The proposed criterion is of general applicability and aims at achieving a balance between the accuracy of the numerical solution of a perturbed linear system of equations and its distance from the analytical solution of the original system, for a given computational precision. Simulations show that the proposed criterion can be effectively used for the compensation of large condition numbers, small finite precisions and unecessary large values of the regularization. / Esta tese trata da regularização do algoritmo dos mínimos-quadrados recursivo (Recursive Least-Squares - RLS). Na primeira parte do trabalho, um novo algoritmo array com matriz de regularização genérica e com ponderação dos dados exponencialmente decrescente no tempo é apresentado. O algoritmo é regularizado via perturbação direta da inversa da matriz de auto-correlação (Pi) por uma matriz genérica. Posteriormente, as equações recursivas são colocadas na forma array através de transformações unitárias. O preço a ser pago é o aumento na complexidade computacional, que passa a ser de ordem cúbica. A robustez do algoritmo resultante ´e demonstrada via simula¸coes quando comparado com algoritmos alternativos existentes na literatura no contexto de beamforming adaptativo, no qual geralmente filtros com ordem pequena sao empregados, e complexidade computacional deixa de ser fator relevante. Na segunda parte do trabalho, um critério alternativo ´e motivado e proposto para ajuste dinâmico da regularização do algoritmo RLS convencional. A regularização é implementada pela adição de ruído branco no sinal de entrada (dithering), cuja variância é controlada por um algoritmo simples que explora o critério proposto. O novo critério pode ser aplicado a diversas situações; procura-se alcançar um balanço entre a precisão numérica da solução de um sistema linear de equações perturbado e sua distância da solução do sistema original não-perturbado, para uma dada precisão. As simulações mostram que tal critério pode ser efetivamente empregado para compensação de números de condicionamento (CN) elevados, baixa precisão numérica, bem como valores de regularização excessivamente elevados.
|
9 |
Design of an adaptive power system stabilizerJackson, Gregory A. 10 April 2007 (has links)
Modern power networks are being driven ever closer to both their physical and operational limits. As a result, control systems are being increasingly relied on to assure satisfactory system performance. Power system stabilizers (PSSs) are one example of such controllers. Their purpose is to increase system damping and they are typically designed using a model of the network that is valid during nominal operating conditions. The limitation of this design approach is that during off-nominal operating conditions, such as those triggered by daily load fluctuations, performance of the controller can degrade.
The research presented in this report attempts to evaluate the possibility of employing an adaptive PSS as a means of avoiding the performance degradation precipitated by off-nominal operation. Conceptually, an adaptive PSS would be capable of identifying changes in the network and then adjusting its parameters to ensure suitable damping of the identified network. This work begins with a detailed look at the identification algorithm employed followed by a similarly detailed examination of the control algorithm that was used. The results of these two investigations are then combined to allow for a preliminary assessment of the performance that could be expected from an adaptive PSS.
The results of this research suggest that an adaptive PSS is a possibility but further work is needed to confirm this finding. Testing using more complex network models must be carried out, details pertaining to control parameter tuning must be resolved and closed-loop time domain simulations using the adaptive PSS design remain to be performed. / May 2007
|
10 |
Wideband Adaptive Array Applied to OFDM SystemHuang, Ren-Huang 13 July 2004 (has links)
Orthogonal frequency division multiplexing (OFDM) technique has been extensively used in digital wireless communications, such as Digital Broadcasting and wireless local area network (WLAN). It is considered to be one of the most promising techniques for transmission on the downlinks of broadband wireless access systems to combat multipath and multiple access interference (MAI). Spatial processing that exploits the diversity provided by smart antenna (SA) or intelligent antenna (IA) arrays, in which the adaptive beamformer is employed, is another alternatives to increase the efficiency of wireless system capacity and performance without allocating additional frequency spectrum. It allows the system to make full use of spatial diversity due to multiple antennas [5][6]. To further improve the performance for suppressing various interference sources; including narrowband and wideband interference, flat and frequency selective fading, for different channel environmentin. In this thesis, a smart antenna with wideband beamspace approach array beamformer associated with the slideing window (SW) linearly constrained RLS (SW-LC-RLS) algorithm, and the OFDM systems with smart antenna array are emhasized. Computer simulation results confirmed that our proposed scheme could achieve desired performance compared with the conventional approach, in terms of MAI and other interference suppression.
|
Page generated in 0.0669 seconds