• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lanczosova metoda v konečné aritmetice / The Lanczos method in finite precision arithmetic

Šimonová, Dorota January 2019 (has links)
In this thesis we consider the Lanczos algoritm and its behaviour in finite precision. Having summarized theoretical properties of the algorithm and its connection to orthogonal polynomials, we recall the idea of the Lanczos method for approximating the matrix eigenvalues. As the behaviour of the algorithm is strongly influenced by finite precision arithmetic, the linear independence of the Lanczos vectors is usually lost after a few iterations. We use the most im- portant results from analysis of the finite precision Lanczos algorithm according to Paige, Greenbaum, Strakos and others. Based on that, we study formulation and properties of the mathematical model of finite presicion Lanczos computati- ons suggested by Greenbaum. We carry out numerical experiments in Matlab, which support the theoretical results.
2

On the regularization of the recursive least squares algorithm. / Sobre a regularização do algoritmo dos mínimos quadrados recursivos.

Tsakiris, Manolis 25 June 2010 (has links)
This thesis is concerned with the issue of the regularization of the Recursive Least-Squares (RLS) algorithm. In the first part of the thesis, a novel regularized exponentially weighted array RLS algorithm is developed, which circumvents the problem of fading regularization that is inherent to the standard regularized exponentially weighted RLS formulation, while allowing the employment of generic time-varying regularization matrices. The standard equations are directly perturbed via a chosen regularization matrix; then the resulting recursions are extended to the array form. The price paid is an increase in computational complexity, which becomes cubic. The superiority of the algorithm with respect to alternative algorithms is demonstrated via simulations in the context of adaptive beamforming, in which low filter orders are employed, so that complexity is not an issue. In the second part of the thesis, an alternative criterion is motivated and proposed for the dynamical regulation of regularization in the context of the standard RLS algorithm. The regularization is implicitely achieved via dithering of the input signal. The proposed criterion is of general applicability and aims at achieving a balance between the accuracy of the numerical solution of a perturbed linear system of equations and its distance from the analytical solution of the original system, for a given computational precision. Simulations show that the proposed criterion can be effectively used for the compensation of large condition numbers, small finite precisions and unecessary large values of the regularization. / Esta tese trata da regularização do algoritmo dos mínimos-quadrados recursivo (Recursive Least-Squares - RLS). Na primeira parte do trabalho, um novo algoritmo array com matriz de regularização genérica e com ponderação dos dados exponencialmente decrescente no tempo é apresentado. O algoritmo é regularizado via perturbação direta da inversa da matriz de auto-correlação (Pi) por uma matriz genérica. Posteriormente, as equações recursivas são colocadas na forma array através de transformações unitárias. O preço a ser pago é o aumento na complexidade computacional, que passa a ser de ordem cúbica. A robustez do algoritmo resultante ´e demonstrada via simula¸coes quando comparado com algoritmos alternativos existentes na literatura no contexto de beamforming adaptativo, no qual geralmente filtros com ordem pequena sao empregados, e complexidade computacional deixa de ser fator relevante. Na segunda parte do trabalho, um critério alternativo ´e motivado e proposto para ajuste dinâmico da regularização do algoritmo RLS convencional. A regularização é implementada pela adição de ruído branco no sinal de entrada (dithering), cuja variância é controlada por um algoritmo simples que explora o critério proposto. O novo critério pode ser aplicado a diversas situações; procura-se alcançar um balanço entre a precisão numérica da solução de um sistema linear de equações perturbado e sua distância da solução do sistema original não-perturbado, para uma dada precisão. As simulações mostram que tal critério pode ser efetivamente empregado para compensação de números de condicionamento (CN) elevados, baixa precisão numérica, bem como valores de regularização excessivamente elevados.
3

On the regularization of the recursive least squares algorithm. / Sobre a regularização do algoritmo dos mínimos quadrados recursivos.

Manolis Tsakiris 25 June 2010 (has links)
This thesis is concerned with the issue of the regularization of the Recursive Least-Squares (RLS) algorithm. In the first part of the thesis, a novel regularized exponentially weighted array RLS algorithm is developed, which circumvents the problem of fading regularization that is inherent to the standard regularized exponentially weighted RLS formulation, while allowing the employment of generic time-varying regularization matrices. The standard equations are directly perturbed via a chosen regularization matrix; then the resulting recursions are extended to the array form. The price paid is an increase in computational complexity, which becomes cubic. The superiority of the algorithm with respect to alternative algorithms is demonstrated via simulations in the context of adaptive beamforming, in which low filter orders are employed, so that complexity is not an issue. In the second part of the thesis, an alternative criterion is motivated and proposed for the dynamical regulation of regularization in the context of the standard RLS algorithm. The regularization is implicitely achieved via dithering of the input signal. The proposed criterion is of general applicability and aims at achieving a balance between the accuracy of the numerical solution of a perturbed linear system of equations and its distance from the analytical solution of the original system, for a given computational precision. Simulations show that the proposed criterion can be effectively used for the compensation of large condition numbers, small finite precisions and unecessary large values of the regularization. / Esta tese trata da regularização do algoritmo dos mínimos-quadrados recursivo (Recursive Least-Squares - RLS). Na primeira parte do trabalho, um novo algoritmo array com matriz de regularização genérica e com ponderação dos dados exponencialmente decrescente no tempo é apresentado. O algoritmo é regularizado via perturbação direta da inversa da matriz de auto-correlação (Pi) por uma matriz genérica. Posteriormente, as equações recursivas são colocadas na forma array através de transformações unitárias. O preço a ser pago é o aumento na complexidade computacional, que passa a ser de ordem cúbica. A robustez do algoritmo resultante ´e demonstrada via simula¸coes quando comparado com algoritmos alternativos existentes na literatura no contexto de beamforming adaptativo, no qual geralmente filtros com ordem pequena sao empregados, e complexidade computacional deixa de ser fator relevante. Na segunda parte do trabalho, um critério alternativo ´e motivado e proposto para ajuste dinâmico da regularização do algoritmo RLS convencional. A regularização é implementada pela adição de ruído branco no sinal de entrada (dithering), cuja variância é controlada por um algoritmo simples que explora o critério proposto. O novo critério pode ser aplicado a diversas situações; procura-se alcançar um balanço entre a precisão numérica da solução de um sistema linear de equações perturbado e sua distância da solução do sistema original não-perturbado, para uma dada precisão. As simulações mostram que tal critério pode ser efetivamente empregado para compensação de números de condicionamento (CN) elevados, baixa precisão numérica, bem como valores de regularização excessivamente elevados.
4

Numerické metody pro řešení diskrétních inverzních úloh / Numerical Methods in Discrete Inverse Problems

Kubínová, Marie January 2018 (has links)
Title: Numerical Methods in Discrete Inverse Problems Author: Marie Kubínová Department: Department of Numerical Mathematics Supervisor: RNDr. Iveta Hnětynková, Ph.D., Department of Numerical Mathe- matics Abstract: Inverse problems represent a broad class of problems of reconstruct- ing unknown quantities from measured data. A common characteristic of these problems is high sensitivity of the solution to perturbations in the data. The aim of numerical methods is to approximate the solution in a computationally efficient way while suppressing the influence of inaccuracies in the data, referred to as noise, that are always present. Properties of noise and its behavior in reg- ularization methods play crucial role in the design and analysis of the methods. The thesis focuses on several aspects of solution of discrete inverse problems, in particular: on propagation of noise in iterative methods and its representation in the corresponding residuals, including the study of influence of finite-precision computation, on estimating the noise level, and on solving problems with data polluted with noise coming from various sources. Keywords: discrete inverse problems, iterative solvers, noise estimation, mixed noise, finite-precision arithmetic - iii -
5

Reliable Solid Modelling Using Subdivision Surfaces

Shao, Peihui 02 1900 (has links)
Les surfaces de subdivision fournissent une méthode alternative prometteuse dans la modélisation géométrique, et ont des avantages sur la représentation classique de trimmed-NURBS, en particulier dans la modélisation de surfaces lisses par morceaux. Dans ce mémoire, nous considérons le problème des opérations géométriques sur les surfaces de subdivision, avec l'exigence stricte de forme topologique correcte. Puisque ce problème peut être mal conditionné, nous proposons une approche pour la gestion de l'incertitude qui existe dans le calcul géométrique. Nous exigeons l'exactitude des informations topologiques lorsque l'on considère la nature de robustesse du problème des opérations géométriques sur les modèles de solides, et il devient clair que le problème peut être mal conditionné en présence de l'incertitude qui est omniprésente dans les données. Nous proposons donc une approche interactive de gestion de l'incertitude des opérations géométriques, dans le cadre d'un calcul basé sur la norme IEEE arithmétique et la modélisation en surfaces de subdivision. Un algorithme pour le problème planar-cut est alors présenté qui a comme but de satisfaire à l'exigence topologique mentionnée ci-dessus. / Subdivision surfaces are a promising alternative method for geometric modelling, and have some important advantages over the classical representation of trimmed-NURBS, especially in modelling piecewise smooth surfaces. In this thesis, we consider the problem of geometric operations on subdivision surfaces with the strict requirement of correct topological form, and since this problem may be ill-conditioned, we propose an approach for managing uncertainty that exists inherently in geometric computation. We take into account the requirement of the correctness of topological information when considering the nature of robustness for the problem of geometric operations on solid models, and it becomes clear that the problem may be ill-conditioned in the presence of uncertainty that is ubiquitous in the data. Starting from this point, we propose an interactive approach of managing uncertainty of geometric operations, in the context of computation using the standard IEEE arithmetic and modelling using a subdivision-surface representation. An algorithm for the planar-cut problem is then presented, which has as its goal the satisfaction of the topological requirement mentioned above.
6

Reliable Solid Modelling Using Subdivision Surfaces

Shao, Peihui 02 1900 (has links)
Les surfaces de subdivision fournissent une méthode alternative prometteuse dans la modélisation géométrique, et ont des avantages sur la représentation classique de trimmed-NURBS, en particulier dans la modélisation de surfaces lisses par morceaux. Dans ce mémoire, nous considérons le problème des opérations géométriques sur les surfaces de subdivision, avec l'exigence stricte de forme topologique correcte. Puisque ce problème peut être mal conditionné, nous proposons une approche pour la gestion de l'incertitude qui existe dans le calcul géométrique. Nous exigeons l'exactitude des informations topologiques lorsque l'on considère la nature de robustesse du problème des opérations géométriques sur les modèles de solides, et il devient clair que le problème peut être mal conditionné en présence de l'incertitude qui est omniprésente dans les données. Nous proposons donc une approche interactive de gestion de l'incertitude des opérations géométriques, dans le cadre d'un calcul basé sur la norme IEEE arithmétique et la modélisation en surfaces de subdivision. Un algorithme pour le problème planar-cut est alors présenté qui a comme but de satisfaire à l'exigence topologique mentionnée ci-dessus. / Subdivision surfaces are a promising alternative method for geometric modelling, and have some important advantages over the classical representation of trimmed-NURBS, especially in modelling piecewise smooth surfaces. In this thesis, we consider the problem of geometric operations on subdivision surfaces with the strict requirement of correct topological form, and since this problem may be ill-conditioned, we propose an approach for managing uncertainty that exists inherently in geometric computation. We take into account the requirement of the correctness of topological information when considering the nature of robustness for the problem of geometric operations on solid models, and it becomes clear that the problem may be ill-conditioned in the presence of uncertainty that is ubiquitous in the data. Starting from this point, we propose an interactive approach of managing uncertainty of geometric operations, in the context of computation using the standard IEEE arithmetic and modelling using a subdivision-surface representation. An algorithm for the planar-cut problem is then presented, which has as its goal the satisfaction of the topological requirement mentioned above.

Page generated in 0.057 seconds