• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance comparison of the Extended Kalman Filter and the Recursive Prediction Error Method / Jämförelse mellan Extended Kalmanfiltret och den Rekursiva Prediktionsfelsmetoden

Wiklander, Jonas January 2003 (has links)
<p>In several projects within ABB there is a need of state and parameter estimation for nonlinear dynamic systems. One example is a project investigating optimisation of gas turbine operation. In a gas turbine there are several parameters and states which are not measured, but are crucial for the performance. Such parameters are polytropic efficiencies in compressor and turbine stages, cooling mass flows, friction coefficients and temperatures. Different methods are being tested to solve this problem of system identification or parameter estimation. This thesis describes the implementation of such a method and compares it with previously implemented identification methods. The comparison is carried out in the context of parameter estimation in gas turbine models, a dynamic load model used in power systems as well as models of other dynamic systems. Both simulated and real plant measurements are used in the study.</p>
2

Performance comparison of the Extended Kalman Filter and the Recursive Prediction Error Method / Jämförelse mellan Extended Kalmanfiltret och den Rekursiva Prediktionsfelsmetoden

Wiklander, Jonas January 2003 (has links)
In several projects within ABB there is a need of state and parameter estimation for nonlinear dynamic systems. One example is a project investigating optimisation of gas turbine operation. In a gas turbine there are several parameters and states which are not measured, but are crucial for the performance. Such parameters are polytropic efficiencies in compressor and turbine stages, cooling mass flows, friction coefficients and temperatures. Different methods are being tested to solve this problem of system identification or parameter estimation. This thesis describes the implementation of such a method and compares it with previously implemented identification methods. The comparison is carried out in the context of parameter estimation in gas turbine models, a dynamic load model used in power systems as well as models of other dynamic systems. Both simulated and real plant measurements are used in the study.

Page generated in 0.1163 seconds