• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Collapse Behaviour Of Red Soils Of Bangalore District

Revanasiddappa, K 05 1900 (has links)
Collapse phenomenon is exhibited by two types of residual soils. The first category of collapsing residual soils is believed to be transported soils that have undergone post-depositional pedogenesis. The second category of collapsing residual soils is highly weathered and leached soils formed by in-situ weathering of parent rock. Residual red soils occur in Bangalore District of Karnataka State. Physical and chemical weathering of the gneissic parent rock formed the residual soils of Bangalore District. The red soils of Bangalore District are generally moderate to very highly porous (porosity range 35-50%). These soils are also unsaturated owing to presence of alternate wet and dry seasons and low ground water table. Moderately to highly porous, unsaturated red soils occur in Pernambuco State of Brazil. These residual soils formed by weathering of gneissic rock significantly collapse on wetting under external pressures. Kaolinite is predominant clay mineral in the red soils of Bangalore and Pernambuco Districts. Similarities exist in the mode of soil formation, clay mineralogy, porosity and degree of saturation (Sr) values of the red soils from Pernambuco State, Brazil, and Bangalore District. Given the collapsible nature of red soils from Pernambuco State, Brazil, the red soils from Bangalore District also deserve to be examined for their potential to collapse in the compacted and undisturbed conditions. The roles of initial dry density, compaction water content, clay content and flooding pressure (the external stress at which a laboratory specimen is inundated is termed as flooding pressure in this thesis) in determining the collapse behaviour of compacted soils are well recognized. However, the influences of above parameters on the collapse behaviour of compacted red soil specimens from Bangalore District are lacking. Such studies are essential as they help to identify the critical compaction parameters (dry density and water content), soil composition, and applied stress level that needs to be controlled by the fill designer in order to minimize wetting-induced collapse. The importance of matric suction in the collapse behaviour of unsaturated soils is well recognized. Yet, the influence of matric suction in the collapse behaviour of compacted soils has only been indirectly examined by varying the compaction water content/degree of saturation of the soil specimens. The climate of Bangalore District is characterized by alternate wet and dry seasons which affects the soil microstructure and the matric suction. Both these parameters have a significant influence on collapse behaviour of unsaturated soils. Cyclic wetting and drying is expected to have a significant bearing on the collapse behaviour of residual soils and is therefore examined. The red soil deposits of Bangalore District are important from foundation engineering view point as they are subjected to structural loading. Owing to the presence of alternate wet and dry seasons and low ground water table, red soil deposits of Bangalore District are more often than not unsaturated. These foundation soils would however be susceptible to increase in moisture content from causes such as infiltration of rainwater, leakage of pipes or watering of lawns and plants. Given the porous and unsaturated nature of undisturbed red soils from Bangalore district, their collapsible nature deserves to be examined for reliable estimation of foundation settlements. To achieve the above objectives, experiments are performed that study: 1.The influence of variations in compaction dry density, initial water content and matric suction, clay content and flooding pressure on the collapse behaviour of a representative red soil sample from Bangalore District. 2.The influence of repeated wetting and drying on the collapse behaviour of compacted red soil specimens. 3.The collapsible nature of undisturbed red soil samples from different locations in Bangalore District. The organization of this thesis is as follows: After the first introductory chapter, a detailed review of literature highlighting the need to study the collapse behaviour of unsaturated red soils of Bangalore District, Karnataka in the compacted and undisturbed states comprises Chapter 2. Chapter 3 presents a detailed experimental programme of the study. Details of representative and undisturbed red soil samples from Bangalore District, Karnataka State, India were used in the study are provided. Determination of collapse potential of compacted and undisturbed soil specimens using conventional oedometer is discussed. Determination of matric suction of compacted and undisturbed specimens by ASTM Filter paper method and pore size distributions by mercury intrusion porosimetry is detailed. Methods to perform cyclic wetting and drying of compacted red soil specimens in modified oedometer assemblies is detailed. These experiments are performed to examine the influence of cyclic wetting and drying on the collapse behaviour of compacted red soil specimens. Chapter 4 examines the collapse behaviour of a compacted red soil from Bangalore District. The influence of variations in compaction dry density, initial water content and matric suction, flooding pressure and clay content on the collapse behaviour of the representative red soil from Bangalore District are examined. Besides measuring the initial matric suction of the compacted red soil specimens, mercury intrusion porosimetry was performed on selected compacted red soil specimens. Experimental results showed that compacted red soils from Bangalore District exhibited tendency to swell and collapse at the experimental range of densities and water contents. Red soil specimens compacted to relative compactions > 90 % at water contents below OMC swelled at flooding pressures lower than 200 kPa. Red soil specimens compacted to relative compactions < 90 % at water contents below OMC significantly collapsed at flooding pressures larger than 200 kPa. Hence maintenance of the design water content during construction of compacted red soil fills is essential to minimize wetting induced volume changes. Experiments showed that the relative abundance of coarse pores (60 to 6 μm, pore radius) were mainly affected on increasing the relative compaction of the specimens from 84 % (dry density = 1.49 Mg/m3) to 100 % (dry density = 1.77 Mg/m3). The relative abundance of the coarse and fine (0.01 to 0.002 μm) pores were both affected on increasing the compaction water content from 10.6 to 26.4 %. These variations in pore size distributions provided better insight into the variations of collapse potential with variations in compaction parameters. ASTM filter paper method showed that for the selected compaction conditions the initial matric suction of the compacted red soil specimens varied between 60 and 10,000 kPa. Further, variations in degree of saturation at a constant relative compaction or variations in relative compaction at a constant degree of soil saturation notably affected the matric suction of the compacted soil specimens. It was also inferred that a clay soil with a higher liquid limit is characterized by a higher matric suction at a given water content. Variations in clay content affected the collapse potentials of soil specimens compacted to dry densities of 1.49 and 1.66 Mg/m3. These specimens exhibited maximum collapse at about 26 % clay content. It is suggested that greater destabilization of inter-particle contacts caused by loss of matric suction on flooding was primarily responsible for the soil specimen containing the critical clay content of 26 % to exhibit maximum collapse potential. Increase in initial dry density, initial water content, clay content of the soil specimen and flooding pressure increased the time-duration of collapse of the compacted soil specimens. The time-duration of collapse was observed to range between 3 and 100 minutes for the tested specimens. Chapter 5 examines the influence of alternate wetting and drying on the collapse behaviour of compacted red soil specimens of Bangalore District. The compacted specimens were subjected to alternate wetting and drying cycles at surcharge pressures of 6.25 and 50 kPa in modified oedometer assemblies. Studies were also performed to examine whether the initial placement conditions have any bearing on the collapse behaviour of red soil specimens subjected to four cycles of wetting and drying. Mercury intrusion porosimetry was performed on a few desiccated red soil specimens. Experimental results showed that cyclic wetting and drying caused the desiccated specimens to exhibit similar or lower swell and collapse potentials than the compacted specimens. Such a behaviour resulted despite the desiccated specimens (specimens subjected to four cycles of wetting and drying are termed as desiccated specimens) possessing similar void ratios but much lower water contents than the compacted specimens. The restraining influence of the desiccation bonds and alteration of soil structure is considered responsible for the reduced swell and collapse tendencies of the desiccated specimens. The desiccation bonds imparted higher apparent preconsolidation pressures to the desiccated specimens. The initial compaction conditions also have a strong bearing on the collapse potentials of the desiccated specimens. Compacted red soil specimens subjected to cyclic wetting and drying under a higher surcharge pressure of 50 kPa exhibited larger swell potentials and lower collapse potentials than specimens desiccated at 6.25 kPa. Besides their lower void ratios, the presence of stronger desiccation bonds also contributed to their lower collapse potentials. The presence of stronger desiccation bonds in specimens desiccated under higher surcharge pressure was indicated by their higher apparent preconsolidation pressures. Chapter 6 examines the collapse behaviour of undisturbed red soil specimens from three locations in Bangalore District at a range of flooding pressures. Studies on the variations in initial water content and effect of remoulding on the collapse behaviour of the undisturbed specimens is supplemented by measuring the initial matric suction and performing mercury intrusion porosimetry experiments. Experimental results showed that based on their collapse potential at 200 kPa, the undisturbed red soils of Bangalore District classified as troublesome to moderately troublesome foundation soils. The bonded structure of the undisturbed red soil specimens imparted them higher apparent preconsolidation pressures and lower swell/collapse potentials than their remoulded counterparts. Variations in in-situ dry density, degree of saturation and relative distribution of pore sizes affected the matric suction and collapse potentials of the undisturbed specimens Chapter 7 summarizes the conclusions of this thesis.
2

Studies on The Transport Rates of Heavy Metals in the Design of Liner Thickness and Remediation of Soils

Sumalatha, J January 2016 (has links) (PDF)
The enormous rate of increase in waste generation across the world is a serious threat to the future generation, if not handled properly, due to the creation of health hazards and global warming. This was awakened many engineers and researchers to find an appropriate solution for efficient management of waste. The land filling of the waste is the most widely adopted method for its disposal, whose efficiency mainly depends on the engineered barrier system in place. Though possessing many limitations, clay liner solely or along with Geo-membrane is often used to avoid ground and surface water contamination. The thickness of the liner of a given breakthrough time depends on the transport rates of the selected contaminants. To estimate the transport rate of any given contaminant, it is necessary to understand the different migration processes of contaminants through the liner material. It was observed from the literature that, the transport rate of contaminants mainly depends on Dispersion coefficient (D) and Distribution coefficient (K) which are the main contaminant transport parameters. The amount of contaminant transport through the liner system for a desired time period is thus estimated from these contaminant transport parameters using the Advection-Dispersion Equation (ADE). The unregulated open dumps are another cause of serious environmental problem, where the contaminants are free to migrate in any direction through the underground soil. The percolation rate and the accumulation of leachate increase during the rainy season, which picks up more contaminants from the waste and thus the threat of the leachate increases. The leachate normally migrates in vertical and lateral directions, causing contamination of ground and surface water resources, and hence, there is a need to estimate the transport rates of contaminants in the porous media. These transport rates are not only useful for designing barrier systems, but also useful to find a suitable remediation technique for the removal of contaminants from a contaminated site. Thus, determination of transport rate is very important in effective waste management systems. Most of the researchers have obtained the contaminant transport parameters through the column tests to simulate one dimensional flow. Often, it is a lengthy process and there is a need to find an easy and effective method of determining these parameters which can reduce the time and effort. Generally, the metallic contaminants such as Cadmium (Cd), Copper (Cu), Lead (Pb), Mercury (Hg), Nickel (Ni) and Zinc (Zn) which are most hazardous are considered for the contaminant migration studies. In the present study, the transport rates of two heavy metals Copper and Zinc through locally available Black Cotton soil and Red soil were studied. Column experiments were conducted to simulate the field conditions under two types of test conditions i.e., Constant and Decreasing source concentrations. For Black Cotton soil as the hydraulic conductivity was very less and was taking a long time for achieving complete breakthrough, the soil sectioning method was used to get the depth versus concentration. The soil sectioning method involves the determination of pore water concentration of any given contaminant in different sections of the soil column. The depth versus concentration profile can serve as the same purpose as that of complete column test after breakthrough. The column experiments can be done only up to a relative concentration (C/C0) of about 0.2 instead of 0.8 or more. The soil samples were compacted to different densities to know the effect of density on transport parameters. The Black Cotton Soil samples were compacted to 0.76-0.97 times of maximum dry density and Red Soil samples were compacted to 0.81-0.98 times of maximum dry density. The samples were compacted to lesser densities to reduce the experimentation time. The transport parameters for field densities can be determined by setting „Forecast Trend Lines‟ to the density versus dispersion coefficient and density versus distribution coefficient plots. The contaminant transport was modeled by various methods i.e., Analytical, Semi-analytical, Explicit Finite Difference and Implicit Finite Difference methods. These models can be extended to predict the contaminant migration through soil liners constructed with similar soils. During the lifetime of a landfill, it may be subjected to both constant and decreasing source concentration conditions and thus the contaminant transport parameters determined by both constant and decreasing tests will be useful to estimate the optimum thickness of soil liner. The disposal of waste solutions and sludges by industries has led to problems with the contamination of both soil and groundwater. Much research work has not been carried out in the past for the remediation of contaminated soils in India. Thus an attempt has been made to study in detail the different remediation techniques on various contaminated soils. Three heavy metal contaminated soils were studied with two remediation techniques i.e., Soil washing and immobilization. As a case study, Zinc contaminated soil was collected from Hindustan Zinc Limited located near Udaipur in Rajasthan State, India and column leach tests were conducted on this soil with different leaching solutions to study the efficiency of the soil washing technique. The leaching solutions used for removing zinc from this soil were 0.1N HCl, 0.1N EDTA, 0.1N HCl+0.1N EDTA and 0.1N FeCl3. It was found that 0.1N FeCl3 was more efficient to remove zinc from this soil. The removal efficiency was also high with 0.1N HCl+0.1N EDTA solution. The transport rates were determined by matching the theoretical elution curves with experimental elution curves. The contaminant transport for column leach tests was modeled using analytical solution based on the Leaching Mass Ratio approach. These transport rates are useful to estimate the rate of treatment as well as the amount of flushing solution required to remove Zinc knowing the area of contamination and in-situ soil conditions. One of the potential sources of soil and ground water contamination with toxic metal ions is Effluent Treatment Plant sludge (ETP Sludge). The efficiency of soil washing technique was also studied on ETP Sludge using five leaching solutions i.e., distilled water, 0.1N HCl, 0.1N EDTA, 0.1N HCl+0.1N EDTA and 0.1N FeCl3. ETP sludge was collected at a filter press, KIADB industrial area, Doddaballapur, Bangalore. The removal efficiencies of these leaching solutions for removal of different metal ions (Copper, Zinc, Iron, Nickel, Cadmium, Lead and Chromium) were studied. The highest removal efficiencies were observed with 0.1N FeCl3 and 0.1N HCl+0.1N EDTA. The transport rates of different metals were determined which will be useful to estimate the quantity of leaching solution required in the field to remediate this sludge using soil washing technique. Even though soil washing technique is more effective than immobilization, for less permeable soil with more clay content, it is not a cost effective method. In such cases immobilization technique can be used to remediate the contaminated soil. The immobilized metals will not migrate through soil to groundwater and will not give adverse environmental hazards in their treated state. In the present study, immobilization technique was studied on two materials, (i) contaminated soil from open dump and (ii) ETP Sludge. The contaminated soil was collected from an open dump located at the Bingipura dumping yard, Bangalore and was tested for the presence of heavy metal ions. The efficiency of treatment to immobilize the metals was studied with different additives. The chemical agents with which can decrease the solubility product will be effective to immobilize the metal ions. The stabilizing agents used for treating these materials were lime water, NaOH and cement. These stabilizing agents were selected after preliminary batch tests. Since most of the heavy metals in soils become less mobile with increase in pH, the lime water / NaOH was added to the soil/sludge to adjust the pH of the mixture to 7.0, 8.5 and 10.0. The cement: soil ratios used were, 1:100 (pH=6. 8), 1:50 (pH=8. 1) and 1:25 (pH=9. 8) by weight. Leaching tests were conducted on the amended soils to know the long term efficiencies of the chemical agents for immobilizing the metal ions. The work carried out in this thesis is presented in different chapters as given below: For the design of the liner system, it is necessary to know the different contaminant transport processes, the determination of their rates and modeling. For remediation of contaminated soil, it is required to find the suitable remediation technique based on the amount and type of pollutants, the type of soil and other geological conditions. The detailed information about sources of heavy metals, effects of heavy metal contamination on health and the environment, contaminant transport processes, methods of determining transport rates, and different modeling techniques for contaminant transport are explained in Chapter 1. The Background information along with the scope and objectives of this study are presented in this chapter. The extensive review of literature related to column experiments, various solutions to Advection-Dispersion Equation, and different remediation techniques to treat the contaminated soil, is also presented in this chapter. Chapter 2 gives detailed information about various materials and methods used in this study. The characteristics of soils used in the present study and preparation of different chemical solutions were explained. The experimental procedures of batch tests, column tests and soil sectioning to determine the contaminant transport parameters were given in detail. The experimental procedures that are required for assessing the efficiency of soil washing technique i.e., Batch leach tests and column leach tests were also explained. The laboratory assessment of immobilization efficiency through leaching test was explained briefly. The analytical and numerical solutions used for this study were discussed in detail. This chapter also includes a method of prediction of breakthrough curves from the incomplete column test data. The contaminant transport parameters of metal ion Copper in two locally available soils i.e., Black cotton soil and Red soil were determined by various techniques i.e., Analytical (using MATLAB v7 software), semi-analytical (using POLLUTE v7 software), Explicit Finite Difference Method with two software tools (MATLAB v7 and M.S.EXCEL 2010), Implicit Finite Difference method with three schemes (BTCS, UPWIND & CRANK NICOLSON) using two software tools (MATLAB v7 and M.S.EXCEL 2010). Modifications were done in the spreadsheet solution of non-reactive solute available from the literature to incorporate the retardation factor as the solutes used in this study are reactive in nature. These results are presented in Chapter 3. The contaminant transport parameters determined for different test conditions (constant and variable source concentrations) and for different densities of soil are reported in this chapter. Determination of transport rates corresponding to maximum dry density using trend lines and preparation of design charts to estimate the thickness of the liner are also discussed in this chapter. The contaminant transport parameters were also determined for metal ion Zinc in the same soils with the same techniques as that of Copper and the migration rates were compared for both the ions. These models and comparative results are presented Chapter 4. It was observed that with increase in density, the dispersion coefficient decreases and Distribution coefficient increases. It was also found that the dispersion coefficient of Black Cotton Soil was lower than that of Red Soil whereas the distribution coefficient of Black Cotton soil is much higher than that of Red Soil. Further, it was observed that the dispersion coefficient of Copper was less than that of Zinc whereas the distribution coefficient of Copper was higher than Zinc. The design of liner thickness, based on transport rates of Zinc is briefly discussed in this chapter. A case study has been explained for the remediation of Zinc contaminated sandy soil using soil washing technique. The undisturbed soil samples collected from four locations of waste disposal site of Hindustan Zinc Limited located near Udaipur in Rajasthan State of Western India were assessed to find the suitable leaching solution and number of pore volumes for the effective removal of Zinc from this soil. The chelates/ solvents used for this soil were 0.1N HCl, 0.1N EDTA, 0.1N HCl+0.1N EDTA and 0.1N FeCl3. The contaminant transport parameters were also determined from the column leach tests based on the Leaching Mass Ratio approach and the results are presented in Chapter 5. From the experimental study it was observed that 0.1N FeCl3 and 0.1N HCl+0.1N EDTA are the most suitable leaching solutions to treat this soil. The Chapter 6 contains the sludge analysis of an industrial ETP sludge, column leach test results of this sludge with different leaching solutions, removal efficiencies of different solutions used and the transport rates of different contaminants. The leaching solutions used for this sludge were distilled water, 0.1N HCl, 0.1N EDTA, 0.1N HCl+0.1N EDTA and 0.1N FeCl3. It was observed that 0.1N FeCl3 and 0.1N HCl+0.1N EDTA are the most suitable leaching solutions to treat this sludge. Other solutions have also removed the contaminants by more than 50%, but the number of pore volumes required to leach out the contaminants was high. The order of removal efficiencies of different solutions is presented below: 0.1N FeCl3 > 0.1N HCl + 0.1N EDTA > 0.1N EDTA > 0.1N HCl > distilled water. The transport rates of different contaminants (Cu, Zn, Cd, Fe, Ni, Pb and Cr) were determined using analytical solution and are presented in this chapter. These transport rates are useful to estimate the quantity of leaching solution required in the field to remediate the sludge using soil washing technique. A contaminated soil collected from an open dump site within Bangalore city and ETP Sludge were analyzed to know the efficiency of immobilization/ solidification technique of remediation using three chemical agents lime, NaOH and cement. The soil samples were mixed with different proportions of these chemicals to adjust the pH of the mixtures to 7.0, 8.5 and 10.0. Leaching tests were conducted on the modified soils to know the long term efficiency of these chemical agents to immobilize the contaminants and these results are discussed in Chapter7. The results showed that highest immobilization efficiencies can be achieved with lime for this contaminated soil and cement is the most suitable chemical agent to treat this sludge. The immobilization efficiencies of different stabilizing agents for various metals were studied and the results analyzed. The Chapter 8 includes the major observations and conclusions of the present research work which will be useful for Geotechnical and Geo-environmental engineers to estimate the transport rates of contaminants, to design the soil liners, to assess the efficiency of soil washing technique to remediate the contaminated soil, to estimate the quantity of leaching solution required in the field for soil washing and to find the suitable chemical agent for remediating the contaminated soil by immobilization technique.
3

Influência do tempo de percolação e da acidez da água nas características de resistência ao cisalhamento e permeabilidade de um solo vermelho no estado da Paraíba. / The influence of seepage time and acidity of water on the permeability and shear strenght behavior of a red soil from State of Paraiba, Brazil.

FERREIRA, Ademilson Montes. 02 October 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-10-02T15:59:06Z No. of bitstreams: 1 ADEMILSON MONTES FERREIRA - DISSERTAÇÃO PPGECA 1976..pdf: 19885507 bytes, checksum: d1ca0c059c79f92f4c6eed90665dcfc4 (MD5) / Made available in DSpace on 2018-10-02T15:59:06Z (GMT). No. of bitstreams: 1 ADEMILSON MONTES FERREIRA - DISSERTAÇÃO PPGECA 1976..pdf: 19885507 bytes, checksum: d1ca0c059c79f92f4c6eed90665dcfc4 (MD5) Previous issue date: 1976-05 / Esta pesquisa de laboratório trata da influência do tempo de percolação e do nível de acidez da água nas características de permeabilidade e resistência de um solo vermelho do Estado da Paraíba. Amostras estaticamente compactadas foram submetidas a percolação de agua por diversos tempos (24,48,7 2 e 96 horas), suas permeabilidades medidas a intervalos de 12 horas e seus parâmetros de resistência triaxial no fim dos vários tempos de percolação. Três níveis de acidez da agua de percolação foram usados, 3,25, 7,3 e 12,4. Equipamento constituído de moldes e um multipermeâmetro de nível constante foi projetado e construído para o estudo, e uma nova técnica para saturação das amostras utilizadas. 0 equipamento usado mostrou resultados estatisticamente aceitáveis e seu uso tem a vantagem de diminuir o tempo de ensaio. O coeficiente de permeabilidade variou in versamente com o pH da água de percolação. Tempo de percola ção por fluxo unidirecional causou uma diminuição de permeabilidade para qualquer dos níveis de acidez investigado. Os parâmetros de resistência em termos de coesão total e efetiva e ângulo de atrito são afetados pela acidez da água de percolação. Os valores de C e f diminuem quando o pH é diminuído de 7,3 para 3,25. Aumentando o pH para 12,4 ocorre um decréscimo adicional nos valores de C e Ø' . É feita uma interpretação qualitativa deste fenômeno. Um estudo piloto limitado dos efeitos da secagem na resistência ao cisalhamento do solo Sapê-Mari mostrou que a secagem por 6 horas a 609C aumenta os valores de C e diminui Ø' para todas as condições de tempo de percolação e nível de pH. / This laboratory investigation deals with the influence of seepage time and levei of acidity of water on the permeability and strength behaviour of a red soil from the State of Paraiba. Specimens statically compacted were subjected to water percolation for varying times (24, 48, 7 2 and 96 hours), their permeabilities measured at intervals of 12 hours and their triaxial strength parameters at the end of the various percolation times. Three leveis of acidity of the seepage water were used, i.e, 3.25, 7.3 and 12.4. Equipment consisting of molds and a multipermeameter of constant head were designed and constructed for the study, and a novel technique for saturation of specimens employed. It is shown that the equipment used provides statistically aceptable results and that its use has the advantaje of shortening the time of testing. The coeficient of permeability was found to vary inversely with the pH of the seepage water. Time of seepage by unidirectional flow caused a decrease of permeability for any of the acidity leveis investigated. The strength parameters in terms of total and efective cohesion and angle of internai friction are noticeably affected by the acidity of the seepage water. The values of C and Ø' decrease slightly when the pH is lowered from 7.3 to 3.25. Increasing the pH to 12.4 causes a further decrease in the values of C and Ø'. A qualitative interpretation of this phenomena is oferred. A limited pilot study of the effects of controlled drying on the shear strength of the Sapé-Mari soil showed that drying 6 hours at 6 09C increases the values of C and decrease 4>1 for ali the conditions of time of seepage and pH levei.
4

Synthesis and Characterization of Geopolymers as Construction Materials

Acharya, Indra Prasad January 2014 (has links) (PDF)
Geopolymers are a relatively new class of materials that have many broad applications, including use as substitute for ordinary Portland cement (OPC), use in soil stabilisation, fire resistant panels, refractory cements, and inorganic adhesives. Geopolymers are an alternative binder to Portland cement in the manufacture of mortars and concrete, as its three-dimensional alumino silicate network develops excellent strength properties. Use of geopolymers in place of ordinary Portland cement is also favoured owing to the possible energy and carbon dioxide savings. Geopolymer is typically synthesized by alkali activation of pozzolanas at moderate temperatures (< 1000C). The focus of the thesis is synthesis and characterization of geopolymers as construction materials. In this context, the role of compositional factors, such as, pozzolana type (fly ash, kaolinite, metakaolinite, ground granulated blast furnace slag, red soil), alkali (sodium hydroxide is used in this study) activator concentration, Si/Al (Si= silicon, Al = aluminium) ratio of the pozzolana and environmental factors, namely, curing period and temperature are examined. Besides synthesizing geopolymers that could be an alternate to concrete as construction material, sand-sized aggregates were synthesized using geopolymer reactions. This was done as river sand is becoming scarcer commodity for use as construction material. Several compositional and environmental factors were varied in geopolymer synthesis in order to identify the optimum synthesis conditions that yield geopolymers with maximum compressive strength. Besides varying external (compositional and environmental) factors, the role of internal microstructure in influencing the compressive strength of the geopolymer was examined. Micro-structure examinations were made using X-ray diffraction (XRD), scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) studies. The studies on compositional and environmental factors in geopolymer synthesis brought out several interesting results. The results firstly brought out that amongst the pozzolanas studied, ASTM class F fly ash is most suited for maximum compressive strength mobilization upon geopolymer reactions. Moderate temperature (75-1000C) was adequate to mobilize large compressive strengths. Room temperature curing needed more than 7 days before the pozzolana-NaOH paste began to develop strength. Curing period of 56 days was needed for the geopolymer to develop significant strength (19.6MPa). A similar range of compressive strength could be developed by the pozzolana-NaOH paste upon curing for 3 days at 1000C. Likewise curing the pozzolana-NaOH paste at temperatures > 1000C led to reduction in compressive strength from shrinkage and breakage of bonds. A caustic soda (NaOH) concentration of 10 M was adequate to develop maximum compressive strength of the geopolymer. Caustic soda concentrations in excess of 10 M did not result in further improvement of strength. The Si/Al ratio also contributes to strength mobilization. The Si/Al ratio of the geopolymer was enhanced by mixing commercially obtained silica gel with the pozzolana. Maximum strength mobilization was observed at Si/Al ratio = 2.45 corresponding to 6.5 % silica gel addition to the pozzolana (on dry mass basis). Comparing compressive strengths of geopolymers with varying silica gel contents, geopolymer specimens with least water content and largest dry density did not exhibit maximum compressive strength indicating that the physico-chemical (bond strength, micro-structure) played a pivotal role than physical parameters (dry density, water content) in dictating the strength of the geopolymer. MIP results showed that bulk of the porosity in fly ash geopolymer specimens is contributed by macro pores and air voids. Geopolymerization leads to bulk consumption of cenospheres in fly ash and forms polymerized matrix with network of large pores. After geopolymerization, all the main characteristic peaks of Al–Si minerals observed in fly ash persisted, suggesting that no new major crystalline phases were formed. Presence of small amount of inorganic contaminants in fly ash can drastically reduce the strength of the fly ash geopolymer. For example, 5-20 % presence of red soil reduces the strength of fly ash geopolymer by 16 to 59 %. Presence of unreacted clay coupled with less porous structure is responsible for the reduction in compressive strength of fly ash geopolymer subjected to red soil addition. MIP studies with geopolymers also revealed that there is good bearing between compressive strengths and maximum intruded volume (from MIP test) of geopolymers. For example, fly ash geopolymer specimen exhibits highest total intruded volume (0.3908 cc/g) and largest compressive strength of 29.5 MPa, while red soil geopolymer specimen exhibit least intruded volume (0.0416 cc/g) and lowest compressive strength (5.4 MPa). Further, analysis showed that specimens with larger airvoids+macropores volume had larger compressive strength, suggesting that geopolymers with more porous microstructure develop larger compressive strength. All geopolymer specimens exhibited tri-modal nature of pores i.e. macro-pore mode (entrance pore radius: 25-5000 nm), mesopore mode (entrance pore radius: 1.25 to 25 nm) and air void mode (entrance pore radius >5000 nm). The micro pores (entrance pore radius < 1.25 nm) do not contribute to porosity of the geopolymer specimens. Sand particles prepared from geopolymer reactions (FAPS or fly ash geopolymer sand) predominated in medium sized (2mm to 0.425 mm) sand particles. Their particle size distribution characteristics (uniformity coefficient and coefficient of curvature) classified them as poorly graded sand (SP). Dissolution, followed by polymerization reactions led to dense packing of the Si–O–Al–O– units that imparted specific gravity of 2.59 to FAPS particles which is comparable to that of river sand (2.61). Dissolution in strongly alkaline medium imparted strongly alkaline pH (12.5) to the FAPS particles. The river sand is characterized by much lower pH (7.9). Despite being characterized by rounded grains, the FAPS particles mobilized relatively high friction angle of (35.5o) than river sand (∅ = 28.9o). The river sand-mortar (RS-M) and fly ash geopolymer sand-mortar (FAPS-M) specimens developed similar 28-day compressive strengths, 11.6 to 12.2 MPa. Despite its higher water content, FAPS-mortar specimens developed similar compressive strength and initial tangent modulus (ITM) as river sand-mortar specimens. The FAPS-M specimen is more porous (larger intruded volume) with presence of larger fraction of coarser pores. Total porosity is majorly contributed by macro-pores (67.92%) in FAPS-M specimen in comparison to RS-M specimen (macro-pores = 33.1%). Mortar specimens prepared from FAPS and river sand exhibit similar pH of 12.36 and 12.4 respectively. FAPS-mortar specimens have lower TDS (1545 mg/L) than river sand-mortar specimens (TDS = 1889 mg/L). The RS-M and FAPS-M specimens exhibit leachable sodium levels of 0.001 g Na/g RS-M and 0.007 g Na/g-FAPS-M respectively in the water leach tests. The larger leachable sodium of FAPS-M specimen is attributed to residual sodium hydroxide persisting in the FAPS even after washing. The ultra-accelerated mortar bar test (UAMBT) shows that the percentage expansion of FAPS-M and RS-M specimens are comparable and range between 0.07 to 0.08 %.

Page generated in 0.0636 seconds