• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 74
  • 41
  • 23
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

[pt] CONTROLE PREDITIVO BASEADO EM MODELO NÃO LINEAR APLICADO A UMA COLUNA DESPROPANIZADORA / [en] NONLINEAR MODEL PREDICTIVE CONTROL APPLIED TO A DEPROPANIZER COLUMN

ANA CAROLINA GUIMARAES COSTA 30 September 2020 (has links)
[pt] Este trabalho tem como objetivo estudar estratégias de Controle Preditivo baseado em Modelo Não-Linear (NMPC) aplicadas a uma coluna de destilação despropanizadora simulada. Essas colunas são empregadas em unidades de processamento de gás natural (UPGNs) para a separação do produto propano do butano. Colunas de destilação possuem características particularmente desafiadoras sob o ponto de vista de controle, como: não-linearidades, grandes constantes de tempo, atraso, restrições de variáveis e inversão do sinal de ganho estático. Como as medidas de composição frequentemente possuem atrasos e dados esparsos, os sistemas de controle convencionais não são capazes de controlar a composição diretamente e possuem dificuldade em manter os produtos dentro das especificações. Contudo, controladores baseados em modelo possuem a habilidade de prever a composição através do modelo interno do processo, além de serem capazes de lidar com restrições. Na literatura, nenhuma aplicação do modelo de Hammerstein modificado para coluna de destilação ou para sistemas multivariáveis foi encontrada, sendo esta uma novidade. Desta forma, foram estudadas três estratégias de controle: controle PID tradicional, NMPC com modelo de Hammerstein modificado (H-NMPC) e NMPC com modelo por Redes Neurais (NN-NMPC). O sistema estudado foi identificado de forma a se obter valores numéricos adequados aos parâmetros dos modelos. A identificação dos parâmetros dos modelos e os algoritmos de NMPC foram implementados no ambiente MATLAB. A coluna de destilação foi simulada usando o Aspen Plus Dynamics. Como resultado, o H-NMPC teve o melhor desempenho de controle ao rastrear diferentes trajetórias de referência, a desacoplar as variáveis controladas e a rejeitar os distúrbios. Além disso, esta apresentou maior rapidez computacional comparado com a estratégia NNNMPC. / [en] This work aims to study strategies of Nonlinear Model Predictive Control (NMPC) applied to a simulated depropanizer distillation column. These columns are used in natural gas processing units (NGPUs) for the separation of the product propane from butane. Distillation columns have particularly challenging features from the control point of view, such as: nonlinearities, large time constants, delay, variable constraints and static gain signal inversion. Because compositional measures often have delays and sparse data, conventional control systems are not able to control composition directly and have difficulty keeping products within specifications. However, model-based controllers predict composition through the internal process model, besides being able to handle constraints. In the literature, no applications of the modified Hammerstein model for distillation column or multivariable systems was found, so this is a novelty. Therefore, three control strategies were studied: traditional PID control, NMPC with modified Hammerstein model (H-NMPC) and NMPC with neural network model (NN-NMPC). The studied system was identified in order to obtain adequate numerical values of the model parameters. The model identification and the NMPC algorithms were implemented in the MATLAB environment. The distillation column was simulated using Aspen Plus Dynamics. As a result, the H-NMPC provided better control performance for different setpoint tracking, control variables decoupling, and disturbance rejection. Furthermore, it presented faster computational speed compared to NN-NMPC.
72

[en] INTELLIGENT OPTIMIZATION MODEL FOR SENSITIVITY OF GMI SAMPLES / [pt] MODELO INTELIGENTE PARA OTIMIZAÇÃO DA SENSIBILIDADE DE AMOSTRAS GMI

ANTONIO CESAR DE OLIVEIRA PITTA BOTELHO 30 April 2019 (has links)
[pt] Sensores capazes de detectar campos magnéticos são largamente aplicados nas mais variadas áreas da engenharia. Um magnetômetro é um dispositivo que, baseado na utilização de um sensor magnético, é capaz de medir a magnitude e/ou direção de um campo magnético. Magnetômetros GMI são transdutores magnéticos cujos elementos sensores se baseiam no efeito da Magnetoimpedância Gigante (Giant Magnetoimpedance - GMI) que se caracteriza pela grande variação da impedância (módulo e fase) de uma amostra de material ferromagnético quando submetida a um campo magnético externo. A sensibilidade dos transdutores magnéticos está diretamente associada à sensibilidade de seus elementos sensores. No caso de amostras GMI, a sensibilidade é afetada por diversos parâmetros, e essa dependência ainda não é bem modelada quantitativamente. Esta dissertação apresenta um modelo computacional baseado em Redes Neurais MLP e em Algoritmos Genéticos que determina a sensibilidade ótima da fase da impedância do efeito GMI em função do campo magnético externo, para ligas ferromagnéticas amorfas de composição Co70 Fe5 Si15 B10, a partir dos seguintes parâmetros que as afetam: comprimento das amostras, nível CC e frequência da corrente de excitação além do campo magnético externo. / [en] Sensors capable of detecting magnetic fields are widely applied in many areas of engineering. A magnetometer is a device that based on the use of a magnetic sensor is capable of measuring the magnitude and direction of a magnetic field. Magnetometers GMI are magnetic transducers which sensors elements are based on the Giant Magnetoimpedance effect (Giant Magnetoimpedance - GMI) that is characterized by large variation of the impedance (magnitude and phase) of a sample of ferromagnetic material when subjected to an external magnetic field. The magnetic transducers sensitivity is directly affected by the sensitivity of its sensor elements. In the case of GMI samples, the sensitivity is affected by several parameters, and this dependence is not well modeled quantitatively. This dissertation presents a computational model based on feedforward Multilayer Perceptron Neural Networks and Genetic Algorithms that determines the optimal impedance phase sensitivity of the GMI effect, as functions of the magnetic field, for Co70 Fe5 Si15 B10 ferromagnetic amorphous alloys, The proposed model is based on some of the main parameters that affect it: length of the samples, DC level and frequency of the excitation current and the external magnetic field.
73

Decomposição de sinais mioelétricos superficiais: avaliação não-invasiva de desordens neuromusculares / Surface mioeletric signals decomposition: non-invasive evaluation of neuromuscular disorders

Flôr, Samuel Waldemar Andrade 18 August 2003 (has links)
Informações sobre as características funcionais e estruturais da unidade motora (UM) são altamente relevantes em investigações fisiológicas e nos estudos clínicos das disfunções neuromusculares. A eletromiografia (EMG) é um método adequado para obtenção dessas informações. Entretanto, devido à dificuldade na separação da atividade individual de uma unidade motora das outras que estão simultaneamente ativas, seu uso em clínica prática se dá comumente através de métodos invasivos, empregando eletrodos de agulha ou fios implantados. Apesar da EMG de superfície ser não-invasiva e, portanto mais apropriada para aplicações clínicas, não é usada em clínica porque não há até o presente um método satisfatório para decomposição do sinal EMG de superfície. Um EMG de superfície é muito mais difícil de decompor devido a significante superposição dos Potenciais de Ação das UMs (MUAPs) e a relação sinal-ruído relativamente baixa, se comparada aos métodos invasivos. Defendemos que a separação da atividade individual das UMs pode ser feita de modo não-invasivo aliando-se técnicas de aquisição altamente especializadas com técnicas usadas em reconhecimento de padrões. Desenvolvemos um método para decomposição de EMGs de superfície, a partir do qual foi possível extrair características relevantes das UMs, que permitem seu uso em avaliação e diagnóstico de desordens neuromusculares. Em nossa abordagem, o sinal EMG é inicialmente captado sob contração isométrica fraca usando eletrodos desuperfície. O sinal EMG bruto passa em seguida por um filtro Diferencial Passa-Baixas Ponderado (DPBP) em série com um detector de picos, que detecta os picos de MUAPs e extrai suas formas de onda. Na sequência, o conjunto de MUAPs extraído é classificado por uma rede neural SOM, e os MUAPs agrupados pela similaridade de suas formas de onda. No próximo passo a informação temporal dos disparos é checada, eliminando possíveis erros de classificação, e finalmente os Trens de MUAPs (MUAPTs) das UMs individuais são reconstituídos do EMG original. As estatísticas de disparos (IPI) bem como as formas de ondas dos MUAPs das respectivas UMs são então extraídas e armazenadas para estudos posteriores. Resultados preliminares obtidos com EMGs normais e patológicos, extraídos de membros superiores sob contração fraca, indicam que, o método mostrou-se apto a decompor EMGs de superfícies, além de potencial para aplicações em estudos clínicos não-invasivos de disfunções neuromusculares.Informações sobre as características funcionais e estruturais da unidade motora (UM) são altamente relevantes em investigações fisiológicas e nos estudos clínicos das disfunções neuromusculares. A eletromiografia (EMG) é um método adequado para obtenção dessas informações. Entretanto, devido à dificuldade na separação da atividade individual de uma unidade motora das outras que estão simultaneamente ativas, seu uso em clínica prática se dá comumente através de métodos invasivos, empregando eletrodos de agulha ou fios implantados. Apesar da EMG de superfície ser não-invasiva e, portanto mais apropriada para aplicações clínicas, não é usada em clínica porque não há até o presente um método satisfatório para decomposição do sinal EMG de superfície. Um EMG de superfície é muito mais difícil de decompor devido a significante superposição dos Potenciais de Ação das UMs (MUAPs) e a relação sinal-ruído relativamente baixa, se comparada aos métodos invasivos. Defendemos que a separação da atividade individual das UMs pode ser feita de modo não-invasivo aliando-se técnicas de aquisição altamente especializadas com técnicas usadas em reconhecimento de padrões. Desenvolvemos um método para decomposição de EMGs de superfície, a partir do qual foi possível extrair características relevantes das UMs, que permitem seu uso em avaliação e diagnóstico de desordens neuromusculares. Em nossa abordagem, o sinal EMG é inicialmente captado sob contração isométrica fraca usando eletrodos desuperfície. O sinal EMG bruto passa em seguida por um filtro Diferencial Passa-Baixas Ponderado (DPBP) em série com um detector de picos, que detecta os picos de MUAPs e extrai suas formas de onda. Na sequência, o conjunto de MUAPs extraído é classificado por uma rede neural SOM, e os MUAPs agrupados pela similaridade de suas formas de onda. No próximo passo a informação temporal dos disparos é checada, eliminando possíveis erros de classificação, e finalmente os Trens de MUAPs (MUAPTs) das UMs individuais são reconstituídos do EMG original. As estatísticas de disparos (IPI) bem como as formas de ondas dos MUAPs das respectivas UMs são então extraídas e armazenadas para estudos posteriores. Resultados preliminares obtidos com EMGs normais e patológicos, extraídos de membros superiores sob contração fraca, indicam que, o método mostrou-se apto a decompor EMGs de superfícies, além de potencial para aplicações em estudos clínicos não-invasivos de disfunções neuromusculares. / Information on the functional and structural characteristics of the motor unit (MU) they are highly important in physiologic investigations and in the clinical studies of the neuromuscular dysfunctions. The electromyography (EMG) it is an appropriate method for obtaining of that information. However, due to the difficulty in the separation of the individual activity of a motor unit of the another that are simultaneously active, your use in practical clinic happen commonly through methods invasive, employing needle electrodes or implanted threads. In spite of surface EMG to be non-invasive and, therefore more appropriate for clinical applications, it is not used at clinic because there is not until the present a satisfactory method for decomposition of the surface EMG sign. A surface EMG is much more difficult of decomposing due to significant overlap of the Motor Unit Action Potentials (MUAPs) and the relationship sign-noise relatively low, if compared to the invasive methods. We defended that the separation of the individual activity of MUs can be made in way non-invasive allying highly specialized acquisition techniques with techniques used in recognition of patterns. We developed a method for decomposition of surface EMGs, starting from which was possible to extract important characteristics of MUs, which allow your use in evaluation and diagnosis of neuromuscular disorders. In our approach, the sign EMG is captured initially under weak isometriccontraction using surface electrodes. The sign EMG raw raisin soon after for a Biased Low-Pass Differential filter (BLPD) in series with a detector of peaks, that detects the peaks of MUAPs and it extracts your wave forms. In the sequence, a SOM neural network classifies the set of extracted MUAPs, and MUAPs are clustered by the similarity in your wave shape. In the next step the temporal information of the discharges is checked, eliminating possible classification mistakes, and finally the MUAPs Trains (MUAPTs) of individual MUs they are reconstituted of original EMG. The statistics of discharges (IPI) as well as the forms of waves of MUAPs of respective MUs are then extracted and stored for subsequent studies. Results preliminaries obtained with normal and pathological EMGs, extracted of superior members under weak contraction, they indicate that, the method was shown capable to decompose surfaces EMGs, besides potential for applications in clinical studies non-invasive of neuromuscular dysfunctions.
74

Classificação automática de cardiopatias baseada em eletrocardiograma

Bueno, Nina Maria 30 October 2006 (has links)
This work is dedicated to study of the recognition and classification of cardiac disease, diagnosised through the electrocardiogram ECG. This examination is normally used in heart medical center, emergency, intensive therapy, and with complement diagnosis in heart disease as: acute myocardium infarction, bundle block branches, hypertrophy and others. The software was developed for support to the model, with focus on extraction of ECG signal characteristics, and an artificial neural network for recognition of diseases. For extraction these characteristics, we have used a auto-regressive model, AR, with the algorithm least mean square LMS, to minimize the minimum error. The neural network, with architecture multilayer perceptron and back propagation algorithm of training, was chosen for the recognition of the standards. The method was showed efficient. / Este trabalho dedica-se ao estudo do reconhecimento e classificação de cardiopatias, diagnosticadas através do exame de eletrocardiografia, ECG. Esse exame é comumente utilizado em visitas a cardiologistas, centros de emergência, centros de terapia intensiva e exames eletivos para auxílio de diagnóstico de cardiopatias como: infarto agudo do miocárdio, bloqueios de ramos, hipertrofia e outros. O aplicativo desenvolvido para apoio ao trabalho focaliza a extração de características do sinal ECG, representado por ciclos e a aplicação destas características a uma rede neural artificial para reconhecimento das cardiopatias. Para extração das características do sinal, utilizamos o modelo matemático de previsão de comportamento de curvas, chamado de auto-regressivo, AR, onde utilizamos o passado histórico recente da curva para determinar o próximo ponto; em nosso caso, utilizamos o algoritmo dos mínimos quadrados para adequação do erro, conhecido como LMS. A rede neural de topologia perceptron multicamadas e com algoritmo de treinamento backpropagation foi escolhida para o reconhecimento dos padrões, pela sua capacidade de generalização. O método se mostrou adequado e eficiente ao objetivo proposto. / Mestre em Ciências

Page generated in 0.0531 seconds