• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 4
  • 3
  • 1
  • Tagged with
  • 38
  • 38
  • 15
  • 12
  • 9
  • 8
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional materials based on redox-active components

Milum, Kristen M. 15 February 2012 (has links)
Conducting polymers have been extensively investigated in a wide range of applications due to their ability to achieve near metallic conductivity while possessing the flexibility and processability of traditional polymers. However, interchain and solid-state effects have made direct investigation of the polymer systems difficult. A series of systematically varied model compounds have been designed to provide detailed information about through-chain charge transport in well-defined oligothiophenes. Our design incorporates two metal binding pockets at either end of an oligothiophene bridge to investigate the interaction of redox centers and charge transport properties between conducting polymers and bound transition metal centers. Synthesis, characterization, electrochemistry, and detailed EPR investigations of this new series of oligothiophene model compounds and the analogous mononuclear compounds will be discussed herein. Conjugated polymer matrices possess a large number of available oxidation states making them an attractive choice for use as redox-active ligands. This variety of oxidation states offers a means to easily tune the amount of electron density on a metal center and consequently affect the binding of an additional ligand. Our approach utilizes conducting metallopolymers with metal complexes synthetically incorporated directly into the conducting polymer backbone. The redox-dependent properties of this class of materials and their development as small molecule storage and delivery systems have been explored utilizing a variety of novel electropolymerizable transition metal complexes. The design, synthesis, characterization, and redox-affected properties of the monomers, corresponding conducting metallopolymers, and model complexes are discussed. The tub-shaped dibenzo[a,e]cyclooctatetraene molecule undergoes a large change in geometry upon reduction to form the planar aromatic species. Herein, we seek to prepare and investigate a supramolecular assembly utilizing this redox-active molecule. In contrast to electrochemically active frameworks where redox changes occur at the metal centers, incorporation of a functionalized dibenzo[a,e]cyclooctatetraene ligand into an assembly has the potential to result in a redox-active framework. Not only would the redox-activity occur at the organic bridge, but reduction of the system should result in a large geometry change. / text
2

Synthesis and reactivity of palladium complexes that contain redox-active verdazyl ligands

Sanz, Corey A. 22 August 2017 (has links)
This thesis presents the synthesis, characterization and reactivity of a series of palladium complexes that contain redox-active verdazyl ligands. This work was motivated by the possibility of discovering new and interesting reactivity that may eventually lead to the development of new chemical reactions. A bidentate verdazyl radical ligand that contains an aryl phosphine was synthesized. Reaction of this ligand with (PhCN)2PdCl2 yielded a square planar (verdazyl)PdCl2 complex. Structural and spectroscopic data suggest that this compound consists of a ligand-centered radical coordinated to a Pd(II) center. The radical complex was chemically reduced by one-electron to generate a binuclear chloride-bridged [(verdazyl)PdCl]2 complex. In this reduced complex, both metals were still Pd(II) and the verdazyl ligand was determined to be in its singly reduced, monoanionic charge state. The original radical PdCl2 complex could be regenerated via one-electron oxidation of the reduced complex using PhICl2. The verdazyl ligands in the reduced complex could also be reversibly protonated to generate “leuco” verdazyl complex (verdazyl-H)PdCl2. Reaction of the radical (verdazyl)PdCl2 complex with water triggers a ligand-centered redox disproportionation reaction. A series of bis(verdazyl) palladium complexes were synthesized using a bidentate pyridine-substituted verdazyl ligand. Reaction of two equivalents of radical ligand with (CH3CN)4Pd2+ yielded a (verdazyl)2Pd(solvent)2+ complex (solvent = CH3CN or DMSO). In this complex, one verdazyl radical ligand chelates to palladium and the other binds as a monodentate ligand. Two-electron reduction of this complex generated a (verdazyl)2Pd complex in which two monoanionic verdazyl ligands are bound to a central Pd(II) ion. This reduced complex could also be made via reaction of 0.5 equivalents of Pd(0)2(dba)3 with two equivalents of radical ligand. In this reaction, the metal is oxidized by two electrons and each ligand is reduced by a single electron. Two-electron oxidation of the reduced complex in the presence of DMSO yielded the original bis(radical)complex, (verdazyl)2Pd(DMSO)2+. Chlorination of the reduced complex using one equivalent of PhICl2 (two-electron oxidation) resulted in dissociation of one verdazyl ligand to afford a 1:1 mixture of free verdazyl : (verdazyl)PdCl2, in which both of the verdazyls are neutral radicals. Reaction of the reduced complex with 0.5 equivalents of PhICl2 (one-electron oxidation) yielded a (verdazyl)2PdCl complex that contained a bidentate reduced verdazyl ligand and a monodentate radical ligand. All three of the oxidation reactions described above adhere to ligand-centered redox chemistry. Reaction of the reduced (verdazyl)2Pd complex with excess HCl resulted in protonation of both the anionic verdazyl ring and the pyridyl group to generate a leuco/pyridinium tetrachloropalladate salt, (verdazyl-H2)2(PdCl4). The protonated salt could be converted back to the original (verdazyl)2Pd complex by deprotonation with water. Palladium complexes of a tridentate NNN-chelating verdazyl ligand were prepared and their redox chemistry was explored. Reaction of the radical ligand with (CH3CN)4Pd2+ yielded radical complex (verdazyl)Pd(NCCH3)2+. The tridentate ligand was also prepared in its reduced, leuco form (verdazyl-H). Reaction of the leuco verdazyl with (CH3CN)2PdCl2 generated HCl and a (verdazyl)PdCl complex in which the ligand is in its monoanionic charge state. The reduced (verdazyl)PdCl complex was reacted with AgBF4 to afford (verdazyl)Pd(NCCH3)+ via chloride abstraction; the verdazyl remained in its reduced charge state following the reaction. Both reduced complexes (chloro and acetonitrile) were oxidized by a single electron to afford the corresponding radical complexes. These radical complexes could be reduced by a single electron to regenerate the original reduced complexes. Like the previous two projects, all of the redox chemistry was ligand-centered. The reactivity of these complexes with primary amines was also explored. Reaction of radical complex (verdazyl)Pd(NCCH3)2+ with n-butylamine resulted in one-electron reduction of the verdazyl ligand. We were unable to determine the mechanism of the reaction, but the reactivity that was observed demonstrates the potential for verdazyl-palladium complexes to be used in the design of new radical reactions. / Graduate / 2018-07-17
3

Syntheses of novel bis(alkylimino)acenaphthene (BIAN) and tetrakis(arylimino)pyracene (TIP) ligands and studies of their redox chemistry

Vasudevan, Kalyan Vikram 06 August 2010 (has links)
The evolution of the present work began with the syntheses of novel bis(alkylimino)acenaphthene (BIAN) ligands. At the outset of this research, despite the presence of dozens of aryl-BIAN ligands in the literature, there were as of yet no reported BIAN ligands bearing alkyl substituents. Given the nearly ubiquitous use of transition metal complexes of alkyl diazabutadiene (DAB) ligands for e.g. catalysis and as ligands for carbene chemistry, interest was generated in developing this emerging field of synthetic chemistry. Initial studies focused on the synthesis of alkyl-BIAN ligands since the traditional synthetic approaches that had been developed for aryl-BIAN ligands were unsuccessful for the alkyl analogues. As an alternate synthetic route, it was decided to employ amino- and imino-alane transfer reagents which had previously proved successful for the conversion of C=O into C=N-R functionalities. While this transfer route had proved successful to synthesize moderate yields of highly fluorinated DAB ligands, it was unknown how or whether this methodology would apply in the case of alkylated BIAN systems. Over the past decade, there has been a surge of interest regarding lanthanide complexes that are capable of undergoing spontaneous electron transfer processes. There are several reports in the literature that describe the ability of Ln(II) ions to undergo spontaneous oxidation, thereby causing one-electron reduction of the coordinated ligand and generally resulting in the corresponding Ln(III) complex. The present work focused on an enhanced understanding of the electronic communication between the lanthanide and the attached ligand. Particular emphasis was placed on defining the resulting oxidation states and the manner in which delocalized electrons of the radical anion species travel over a conjugated system. This fundamental information was gleaned from single-crystal X-ray diffraction studies and magnetic moment measurements that were obtained using the Evans method. Additional insights stemmed from the use of more classical techniques such as IR and NMR spectroscopy. In favorable cases, the presence or absence of spectral peaks can permit assignment of the lanthanide oxidation state. Accordingly, the research plan was to synthesize a series of BIAN-supported decamethyllanthanocene complexes with the goal of learning how to control the spontaneous charge transfer that had been reported in the literature. A longer term goal was to develop a bifunctional ligand of the BIAN type that was capable of accommodating two lanthanide or main group element moieties. Systems with tunable electronic interactions between lanthanide or main group elements are of interest because they offer the prospect of extended delocalization of electron density. Systems of this type have potential applications as e.g. molecular wires and single-molecule magnets. Indeed, such systems have been investigated by using bis(bipyridyl) and bis(terpyridyl) ligands to support two redox-active moieties. However, in the present work, it was recognized that a bifunctional BIAN-type ligand might be of considerable interest as the supporting structure for studying the communication between lanthanide or main group element moieties. A synthesis of variously substituted tetrakis(imino)pyracene (TIP) ligands was therefore undertaken. The flat, rigid nature of the TIP ligands rendered them ideal scaffolds for studying the redox behavior and electronic communication between lanthanide or main group element centers. The new TIP ligand class also proved to be useful for the assembly of the first example of a metallopolymer based on a BIAN-type ligand. / text
4

Self-Assembly of Dendrimers and Cucurbit[n]uril Complexes

Wang, Wei 14 December 2008 (has links)
This dissertation investigates the preparation and electrochemical studies on a series of novel redox active hybrid dendrimers. The author also describes cucurbit[8]uril (CB8) mediated dendrimer self-assembly and their size selection by applying external electrochemical stimulus. In addition to this, a series of redox active, carboxylic acid terminated dendrimers were deposited onto indium tin oxide (ITO) surfaces. The surface interactions between the dendrimers and the metal oxides were characterized by electrochemical, spectroscopic, and atomic force microscopic methods. Additionally, the author describes molecular recognition behavior studies between several redox active guests and cucurbit[7]uril (CB7) in non-aqueous media. Furthermore, the author also describes the preparation and electronic communication studies on a series of bisferrocenylamino triazine derivatives. Three chapters of this dissertation deal with dendrimer applications in several different topics. A general introduction to dendrimers is given in Chapter I, including a short history, dendrimer structural features, synthetic methodologies, and also including their general applications on several different topics. Chapter II describes the preparation and characterization of a series of novel redox active hybrid dendrimers. These dendrimers consist of a ferrocenylamino nucleus and two series of popular dendrons (Fréchet and Newkome type). Interestingly, the microenvironment surrounding the redox residues is finely adjustable by varying the size of these two types of dendrons. Chapter III describes the molecular recognition studies with selected redox active guests and the macrocyclic host CB7 in non-aqueous media. The extremely strong host-guest interaction between CB7 and ferrocenylmethyl-trimethylammonium (FA) in aqueous media experiences a substantial thermodynamic stability loss when transferred to non-aqueous media. In stark contrast to this, the binding behavior between CB7 and the dicationic guest methyl viologen (MV) exhibits less sensitivity to environmental variation. Furthermore, the electrochemical studies were performed under non-aqueous media. In general, host CB7 encapsulation of these redox active guests in non-aqueous media induces different electrochemical behavior compared to that of aqueous media. For instance, the cyclic voltammetric response of CB7 encapsulated FA in DMSO exhibit substantial cathodic potential shift, which is opposite to the behavior in aqueous media. Chapter IV describes CB8 mediated dendrimer self-assembly. A new series of pi-donor containing Newkome type dendrimers were synthesized. These pi-donor containing dendrimers are found to form stable ternary charge transfer complexes with another series of pi-acceptor (viologen) containing dendrimers. Furthermore, one electron reduction of the viologen residue disrupts the charge transfer complexes and leads to the assembly of viologen radical cation dimmers. And, thus, may result in substantial size selection between these two types of dendrimer assemblies. Chapter V describes the exploration of a series of redox active dendrimers bearing multiple carboxylic acids as surface anchoring groups to attach onto the optical transparent semiconductor material ITO coated glass surfaces. The dendrimer derivatized ITO slides were further prepared as working electrodes, and the subsequent electrochemical studies revealed that these dendrimers strongly adsorb onto ITO surfaces. Especially, the ITO electrodes treated with the second generation dendrimer exhibit rather stable electrochemical behavior. The surface coverages of ITO electrodes treated with dendrimers were estimated by current integration. Atomic force microscopic studies provided insights on surface topographical variation before and after the dendrimer deposition. Infrared spectroscopic studies further revealed the chemical interactions between dendrimer carboxylic acid groups and the metal oxide surfaces. Chapter VI describes the preparation of a series of triazine based bisferrocenylamino derivatives. Variable 1H-NMR and 13C-NMR spectroscopic studies clearly indicate that these bisferrocenylamino triazine derivatives exhibit rotamerization phenomena. And, the rotamer coalescence temperatures are mediated by the third substituent group. The X-ray crystallographic analyses disclose the partial double bond character between the amino nitrogen and the triazine carbon, which reveal the structural proof behind the rotamerization phenomena. Furthermore, electrochemical experiments are performed under two sets of experimental conditions. No electronic communication is observed when using the traditional tetrabultylammonium hexafluorophosphate (TBAPF6) as supporting electrolyte. In stark contrast to this, electronic communication between the bisferrocenyl residues is observed when using tetrabultylammonium tetrakis(pentafluorophenyl)borate (TBAB(C6F5)4) as supporting electrolyte. Surprisingly, the electronic communication strength can be mediated by a third substituent group. Computational studies provide insights into the molecular geometry and electronic structure of the mixed valence species. By combining the supporting electrolyte dependant electronic communication behavior, near-IR spectroscopic studies and the computational results, we conclude that, the electronic communication between the bisferrocenyl residues in these investigated triazine derivatives occurs through space metal-metal interactions.
5

Electrochemical synthesis and characterization of redox-active electrode materials

Hahn, Benjamin Phillip 17 April 2014 (has links)
This dissertation explores cathodic electrodeposition mechanisms that describe the synthesis of redox-active electrode materials. Several interesting elements are known to deposit at negative potentials (e.g., Mo, Re, Se), and by extending this work, we can tailor the growth of new binary systems (e.g., MoxRe₁₋xOy, MoxSe₁₋xOy) that have enhanced optical and electronic properties. To grasp the subtleties of deposition and understand how the growth of a particular phase is influenced by other species in solution, several analytical methodologies are used to thoroughly characterize film deposition, including chronocoulometry, voltammetry, nanogravimetry, UV-Visible spectroelectrochemistry, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and inductively coupled plasma mass spectrometry (ICPMS). Chapter 1 is a general introduction that discusses the growth of redox-active metal oxides and alloys with an emphasis on tuning the composition to enhance material performance. Chapter 2 proposes a mechanistic pathway for the deposition of rhenium films from an acidic perrhenate (ReVIIO₄⁻) solution containing both metallic and oxide components. Unlike many other metal anions, it was observed that ReVIIO₄⁻ adsorbs to the electrode surface prior to reduction. As such, ReVIIO₄⁻ is ideally situated to be a redox-active mediator for other electrochemical reactions, and in Chapter 3, this dissertation explores how ReVIIO₄⁻ increases the deposition efficiency of Mo oxide deposition. Depth profiling XPS supported by electrochemical studies demonstrated that Mo and Re deposit separately to form an inhomogeneous material, MoxRe₁₋xOy (0.6 < x ≤ 1.0). Over a limited potential range from –0.3 V to –0.7 V (vs Ag/AgCl) the rhenium mole fraction increases linearly with the applied voltage. Chapter 4 explores the deposition of MoxSe₁₋xOy, and in this case, the incorporation of Mo species in solution shifts the deposition of Se⁰ to more positive potentials. Depending on the applied potential used, voltammetry experiments suggest that a small amount of Mo (<5%) reduces to the zero-valent phase to yield the photosensitive alloy, MoxSey. Chapter 5 discusses future work and presents preliminary data describing the deposition of Se⁰ on ITO using adsorbed ReVIIO₄⁻ as a redox mediator. / text
6

Synthesis, Redox and Spectroscopic Properties of Nindigo and a Variety of Nindigo Coordination Compounds

Nawn, Graeme 26 August 2013 (has links)
Ligand design plays an important role in the development and control of new coordination compounds. A new ligand architecture, Nindigo, has previously been reported and this study represents an expansion of that research to gain better insights into the attributes of this multifunctional ligand family. Mono- and bis-palladium chelates of Nindigo have been synthesized with resulting electrochemical measurements allowing for the reversible redox-active nature of the ligand set to be identified. The electronic absorption properties of these complexes were also studied. The presence of the palladium centre was found to drastically perturb the ligand centered π-π* transition resulting in significant red shifts in the absorption spectra with respect to free Nindigo. The main group coordination chemistry of Nindigo was explored by generating mono- and bis-BF2 Nindigo chelates. The electrochemical and spectral properties of these compounds were investigated with both families displaying weak emission in the NIR region. The bis-BF2 chelates were found to be sensitive in nature and decompose to the mono-BF2 chelates. In addition, heteroleptic complexes of mono-BF2 Nindigo chelates with palladium were also synthesized. The redox chemistry as well as the electronic absorption characteristics of these compounds provides a conceptual bridge between the two homologues. Homoleptic zinc and copper complexes of mono-BF2 Nindigo chelates have been synthesized. The zinc derivative serves as an “innocent” system where all redox and spectral properties are ligand centered and the oxidation states of both the metal and surrounding ligands can be assigned. The copper complexes exhibit more diverse chemistry with the redox and electronic absorption properties differing dramatically from the zinc system. A combination of EPR, XPS and computational analysis suggests the copper systems to be non-innocent in nature. In addition to the bis-bidentate anionic Nindigo ligand system, the fully oxidized neutral analogue has also been synthesized. DehydroNindigo exhibits significantly different chemical behaviour from Nindigo. Bridged ruthenium dimers have been synthesized that are obtained as two isomers, cis and trans (with respect to the bridging ligand). Both isomers exhibit rich electrochemical behaviour. The mixed valence states of both species are found, electrochemically, to be extremely stable with respect to disproportionation. / Graduate / 0485 / 0488 / gnawn@uvic.ca
7

Synthesis, Structures, Properties, and Reactivity of New Group 10 Heteroleptic Dithiolene Complexes

January 2019 (has links)
archives@tulane.edu / This dissertation is dedicated to the study of the synthesis, crystal structures, properties, and reactivity of heteroleptic metallodithiolene complexes of the Group 10 metals. In this work, we report a systematic survey of the reactivity of [(Ph2C2S2)2M] (M = Ni, Pd, Pt) toward ligand substitution. The upshots of the survey are the clarification of the attributes of the incoming ligand that facilitate ligand displacement, creation of a new set of heteroleptic dithiolene complexes, [M(Ph2C2S2)(C≡NR)2] (M = Ni, Pd, Pt; R = Me, Bn, Cy, tBu, 1-Adamantyl, Ph), and improvement in the efficiency by which mixed-ligand “push-pull” compounds are made. The scope of dithiolene ligand displacement by incoming ligands was expanded beyond the already reported phosphine and diimine ligands. Spectroscopic and physical characterization techniques including S K-edge X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) were used in conjunction with DFT computational methods to establish the properties of the compounds prepared in this study. Representative [(Ph2C2S2)Pt(C≡NR)2] (R = aryl) complexes exihibited low temperature luminscence in frozen solvent glasses with relatively long lifetimes. The relevance of the dithiolene redox non-innocence in the ligand substitution mechanism has also been elucidated, thereby giving an insight into the fate of the displaced dithiolene ligand. Redox disproportionation between two radical monoanionic dithiolene ligands leads to the creation of a dithione, which is an enhanced leaving group and an inherently reactive species. When displacement of dithiolene ligand from [(Ph2C2S2)2Ni] was conducted with a twofold excess of C≡NCy, 4,5-diphenyl-1,3-dithiol-2-cyclohexylimine could be isolated. The identification and characterization of this compound is consistent with the creation of dithiobenzil during the ligand substitution. The reactive α-dithione is also capable of undergoing rapid irreversible polymerization, thereby providing the thermodynamic impetus for the dithiolene ligand substitution. Chemical oxidation of [Pt(Ph2C2S2)(C≡NtBu)2] with [N(C6H4Br-4)3][SbCl6] was undertaken to form [Pt(Ph2C2SˉS‧)(C≡NtBu)2]2[SbCl6]2. Structural determination of the dication revealed appreciable shortening and lengthening of C─S and C─C bond distances, respectively, within the dithiolene ligand as compared to the charge-neutral complex, an observation which confirmed the dithiolene ligand as the locus of the redox activity in the heteroleptic monodithiolene complexes. The utility of [M(Ph2C2S2)(C≡NMe)2] (M= Ni, Pd, Pt) as synthons in their own right for heteroleptic compounds not directly attainable by ligand substitution from [M(Ph2C2S2)2] was also explored. The panorama of outcomes when [M(S2C2Ph2)(CNMe)2] (M = Ni2+, Pd2+, Pt2+) are introduced to new ligands intended to substitute for CNMe has been thoroughly defined. The most significant breakthrough was the isolation of the dicyanide complex, [Et4N]2[Ni(S2C2Ph2)(C≡N)2], which is a potentially useful precursor toward cyanide-bridged multimetallic architectures. Finally, the synthesis and structural characterization of multimetallic complexes bridged by bis(diphenylphosphine) ligands and redox active dithiolenes as end capping ligands are described. The electrochemistry study revealed that the dimetallic compounds support reversible oxidation to dications, which likely have singlet diradical - triplet states in close equilibrium. The use of dithiolene ligands as electron spin hosts offers new possibilities for the application of metallodithiolene complexes in molecule-based spintronic devices, such as quantum bits (qubits). / 1 / Antony Obanda
8

Reactivity and Properties of the PN 3P Pincer Platform Insights from Computations and Spectroscopy

Munkerup, Kristin 08 1900 (has links)
Abstract: Pincer compounds are organometallic complexes with intriguing tunable reactivities. In this work we explore their unique properties and reactivities through spectroscopic and computational investigations, with a focus on the PN3P pincer platform. First, we conducted a computational study on five pincer complexes with stereogenic phosphine arms that have multiple well-defined rotamers. Significant energy differences could be found between the lowest and highest energy rotamer in each set of pincer complexes. All rotamers for reactant, transition state, and product, were evaluated in a reaction energy profile of a CO2 reduction by a pincer nickel hydride, and we found that this reaction could be found either favorable or unfavorable, depending on the choice of rotamer. A software to generate rotamers has been developed and applied to the work presented in this part. The zwitterionic aromatic resonance form has a large contribution in the dearomatized PN3P* nickel pincer complexes, which is demonstrated by the imine arm's ability to act as an organic σ-donor, similar to NHC catalysts. Related to this property, as well as the pincer compound's ability to undergo metal-ligand cooperation catalysis, is the basicity (or acidity) of pincer ligand spacer arms. Therefore, we have determined the Brønsted basicity of the imine arm in three PN3P* nickel pincer complexes in THF. The relative basicity was found to be strongly influenced by the X ligand trans to the PN3P* ligand, and less by alkyl groups on phosphine donor arms. Finally, we explored the reactivity between a PN3P* rhodium carbonyl pincer complex and dioxygen at room temperature in solution, and at elevated temperature in the solid state. Intriguingly, the singlet PN3P* rhodium carbonyl complex reacts with the triplet dioxygen both in solution and in the solid state to afford oxidation on the ligand backbone. This is possible due to the ligands ability to do a single-electron transfer to dioxygen. The solid state reaction was studied with in situ rhodium K-edge X-ray absorption spectroscopy under dioxygen flow, where an isobestic point was observed, and simulation studies support formation of a Rh-O2 adduct. In situ FTIR studies in a static dioxygen environment revealed that the PN3P* rhodium carbonyl complex is able to facilitate the incorporation of O2 into CO and CO2.
9

Developing Redox-Active Organic Materials for Redox Flow Batteries

Lashgari, Amir 23 August 2022 (has links)
No description available.
10

The Great Potential of Redox Active Ligands: Applications in Cancer Research and Redox Active Catalysis

Miles, Meredith January 2018 (has links)
No description available.

Page generated in 0.0638 seconds