Spelling suggestions: "subject:"redox potential control"" "subject:"sedox potential control""
1 |
The Influence of Controlling Redox Potential on Plasma Membrane Fatty Acid Composition during Very High Gravity Fermentation2015 December 1900 (has links)
Fatty acid components on yeast plasma membrane were critical in maintaining proper cell activity during bioethanol fermentation. The alteration of fatty acid composition on yeast plasma membrane was recognized as an adaptive response to several environmental stress including osmotic pressure, ethanol inhibition and nutrients limit. These stresses were exacerbated under very-high-gravity condition in which excessive fermentable sugar was provided in feedstock. Controlling redox potential was proved beneficial in improving yeast performance under very-high-gravity condition. Fatty acid synthesis and desaturation pathways involved dissolved oxygen as well as balance between NAD+/NADH and NADP+/NADPH which could be influenced by the regulation of redox potential in media. In this study, fatty acid composition profiles under different glucose concentrations and different redox potential control level were examined. Its connection with yeast cell growth, ethanol productivity and other metabolites’ concentrations were studied as well to reveal any causal correlation between redox potential control, membrane fatty acid composition and yeast activity.
Two glucose concentrations used in this study were 200 g/L and 300 g/L which represented normal and very high gravity respectively in bioethanol fermentation. In 300 g/L fermentation, three redox conditions were adopted while two different redox conditions were used in 200 g/L fermentation. Biomass concentration, ethanol productivity and fatty acid composition were observed to be affected by both gravity and ORP control strategy. Final biomass concentrations were 4.302 g/L in 200 g/L glucose with no ORP control condition and 7.658 in 200 g/L glucose with ORP controlled at -100 mV condition. In 300 g/L glucose fermentation, final biomass concentrations were 3.400 g/L for no ORP control, 4.953 g/L for -150 mV ORP control and 5.260 for -100 mV ORP control. Ethanol productivities were 2.574 g/Lh for 200 g/L glucose without ORP control and 3.780 g/Lh for 200 g/L glucose with -100 mV ORP control. In 300 g/L glucose fermentation, ethanol productivity decreased to 1.584 g/Lh when no ORP control was imposed. ORP control at -150 mV could improve the ethanol productivity to 1.693 g/Lh while -100 mV ORP control was able to further enhance the ethanol productivity to 1.829 g/Lh. Fatty acid composition was observed to shift to more saturated components when no ORP control was applied. Such trend of saturation was increased by higher gravity condition. ORP control was shown to change this tendency to saturation and help restore fatty acid components on plasma membrane to a more balanced distribution.
|
2 |
Process modeling of very-high-gravity fermentation system under redox potential-controlled conditionsYu, Fei 31 August 2011
The objective of this study is to evaluate and compare, both technically and economically, various glucose feeding concentrations and different redox potential settings on ethanol production under very-high-gravity (VHG) conditions. Laboratory data were collected for process modeling and two process models were created by two individual process simulators. The first one is a simplified model created and evaluated by Superpro Designer. The second one is an accurate model created by Aspen Plus and evaluated by Aspen Icarus Process Evaluator (Aspen IPE). The simulation results of the two models were also compared.
Results showed that glucose feeding concentration at 250±3.95 g/L to the fermentor resulted in the lowest unit production cost (1.479 $/kg ethanol in the Superpro model, 0.764 $/kg ethanol in the Aspen Plus model), with redox potential control effects accounted. Controlling redox potential at -150 mV increased the ethanol yield under VHG fermentation conditions while no significant influences were observed when glucose feeding concentration was less than 250 g/L. Results of product sales analysis indicated that for an ethanol plant with a production rate of 85~130 million kg ethanol/year, only maintaining the glucose feeding concentration to the fermentor at around 250 g/L resulted in the shortest payout period of 5.33 years in average,, with or without redox potential control. If 300±6.42 g/L glucose feeding concentration to the fermentor is applied, it is essential to have the redox potential only controlled at -150 mV in the fermentor to limit the process payout period within 6 years. In addition, fermentation processes with glucose feeding concentration at around 200 g/L to the fermentor were estimated to be unprofitable under all studied conditions.
For environmental concerns, two disposal alternatives were presented for CO2 produced during fermentation process rather than emission into atmosphere. One is to sell CO2 as byproduct, which brought 1.52 million $/year income for an ethanol plant with a capacity of 100 million kg ethanol/year. Another option is to capture and transport CO2 to deep injection sites for geological underground storage, which is already a safe and mature technology in North America, and also applicable to many other sites around the world. This would roughly add 4.78 million dollars processing cost annually in the studied scenario. Deep injection of captured CO2 from ethanol plants prevents emission of CO2 into the atmosphere, thus makes it environmental friendly.
|
3 |
Process modeling of very-high-gravity fermentation system under redox potential-controlled conditionsYu, Fei 31 August 2011 (has links)
The objective of this study is to evaluate and compare, both technically and economically, various glucose feeding concentrations and different redox potential settings on ethanol production under very-high-gravity (VHG) conditions. Laboratory data were collected for process modeling and two process models were created by two individual process simulators. The first one is a simplified model created and evaluated by Superpro Designer. The second one is an accurate model created by Aspen Plus and evaluated by Aspen Icarus Process Evaluator (Aspen IPE). The simulation results of the two models were also compared.
Results showed that glucose feeding concentration at 250±3.95 g/L to the fermentor resulted in the lowest unit production cost (1.479 $/kg ethanol in the Superpro model, 0.764 $/kg ethanol in the Aspen Plus model), with redox potential control effects accounted. Controlling redox potential at -150 mV increased the ethanol yield under VHG fermentation conditions while no significant influences were observed when glucose feeding concentration was less than 250 g/L. Results of product sales analysis indicated that for an ethanol plant with a production rate of 85~130 million kg ethanol/year, only maintaining the glucose feeding concentration to the fermentor at around 250 g/L resulted in the shortest payout period of 5.33 years in average,, with or without redox potential control. If 300±6.42 g/L glucose feeding concentration to the fermentor is applied, it is essential to have the redox potential only controlled at -150 mV in the fermentor to limit the process payout period within 6 years. In addition, fermentation processes with glucose feeding concentration at around 200 g/L to the fermentor were estimated to be unprofitable under all studied conditions.
For environmental concerns, two disposal alternatives were presented for CO2 produced during fermentation process rather than emission into atmosphere. One is to sell CO2 as byproduct, which brought 1.52 million $/year income for an ethanol plant with a capacity of 100 million kg ethanol/year. Another option is to capture and transport CO2 to deep injection sites for geological underground storage, which is already a safe and mature technology in North America, and also applicable to many other sites around the world. This would roughly add 4.78 million dollars processing cost annually in the studied scenario. Deep injection of captured CO2 from ethanol plants prevents emission of CO2 into the atmosphere, thus makes it environmental friendly.
|
Page generated in 0.0942 seconds