Spelling suggestions: "subject:"redox probe"" "subject:"sedox probe""
1 |
Examining the Effects of Applied Potential on the Surface Charge of Functionalized Monolayers for Site-Directed Ionic Self AssemblySanders, Wesley Crowell 02 December 2008 (has links)
The focus of this dissertation research involves surface charge manipulation of functionalized monolayers. Application of potential to acid or base terminated organic films immobilized on electrodes results in the ionization of the terminal groups. The ionization of these groups using applied potential provides conditions favorable the control of polyelectrolyte deposition to the monolayer surface.
Research is presented that asserts that the interfacial pH of acid or base terminated monolayers responds to applied potential as a result of the accumulation of phosphate counterions to the monolayer-solution interface. Results obtained from applied potential modulation of surface charge endeavors strongly suggest that manipulation of terminal group ionization with applied potential “turns on“ or “turns off“ the charge of the monolayer. Switching on the surface charge of functionalized monolayers using applied potential yields conditions that make it possible for the promotion or inhibition of electrostatic attachment of polyelectrolyte to the monolayer surface.
Electrostatic interactions between immobilized polyelectrolytes and redox probes result in changes in electron transfer that can be monitored with electrochemical impedance measurements. Impedance measurements provide a qualitative assessment of the degree of potential-driven polyelectrolyte self assembly. The electrostatic interactions between the redox probe in solution and the terminal region of monolayers directly affects the extent of charge-transfer between the electrode and the redox probe in solution. For this reason, impedance measurements are able to provide an indication of whether or not potential drives to electrostatic deposition to the terminal region of a functionalized monolayer.
Unlike impedance measurements, quartz crystal microbalance measurements provide quantitative mass assessments that confirm polyelectrolyte deposition of inhibition under the direction of applied potential. Application of appropriate potentials is shown to induce variations in the electrostatic interactions between redox probes in solution and terminal groups of monolayers. Variations in the electrostatic interactions between the modified electrode and the redox probe modulate electron transfer that produces varying current. Since scanning electrochemical microscopy (SECM) relies on modulation of feedback current underneath a ten-micrometer platinum tip, SECM provides a means for monitoring of potential-driven surface charge modulation. Experiments presented in this dissertation will show that in addition to monitoring the effect of applied potential on the charge of ionizable surface groups, SECM can also be used to selectively deposit a polyelectrolyte to the surface of a carboxylic acid terminated monolayer. The SECM tip was rastered over the surface of a functionalized monolayer in the form of a simple pattern while the electrode was immersed in a dilute polyelectrolyte solution. As the SECM tip was moved and potential stepped more positive than the PZC, ionization was confined ionization to one spot encouraging localized ionic self assembly. / Ph. D.
|
2 |
Cycle redox quinone-quinone réductase 2 et conséquences sur la production d'espèces oxygénées réactives dans le contexte cellulaire / Quinone-quinone reductase 2 redox cycle and consequences on the production of reactive oxygen species in the cellular contextCassagnes, Laure-Estelle 28 September 2015 (has links)
La quinone réductase 2 ou QR2 est une enzyme qui, comme son homologue QR1, joue un rôle de détoxification des quinones, molécules fortement réactives, en les réduisant en hydroquinones. Cependant, il a été observé au niveau cellulaire et tissulaire que l'activité de cette flavoprotéine pouvait avoir des effets délétères en déclenchant une surproduction d'espèces réactives de l'oxygène (ROS). D'autre part, on observe une surexpression ou une sous expression de QR2 dans certaines maladies neurodégénératives comme la maladie de Parkinson et la maladie d'Alzheimer. Dans ce contexte, ce travail a porté sur l'étude des espèces oxygénées réactives produites lors du cycle redox quinone / QR2 et leurs variations en fonction de la nature de la quinone, sur protéine purifiée et sur modèles cellulaires comparativement à QR1. Les propriétés d'oxydo-réduction des substrats, co-substrats et inhibiteurs de QR2 étudiées par électrochimie ont permis de les classer en fonction de leur capacité à être réduits. L'activité enzymatique de la protéine, qu'elle soit purifiée ou intracellulaire, a été suivie par différentes méthodologies (résonance paramagnétique électronique, spectroscopie UV-visible et de fluorescence, U(H)PLC-MS, microscopie confocale de fluorescence). La production du radical superoxyde est observée en présence de lignées cellulaires surexprimant ou non QR1 et QR2. Les quinones sont réduites enzymatiquement pour donner des hydroquinones via l'activité des quinones réductases (QR1 et QR2) et des semiquinones via l'activité de réductases à un électron (CytP540 réductase par exemple). La réoxydation de ces produits est responsable d'une production plus ou moins forte de radicaux superoxydes selon la structure initiale de la quinone et l'affinité pour les différentes réductases. La ménadione provoque une production cellulaire de superoxyde plus importante en l'absence de QR1 et QR2. Ces analyses ont également démontré que, comme son homologue QR1, QR2 est capable de réduire les ortho-quinones dont certaines catécholquinones (aminochrome, dopachrome, adrénochrome) reconnues pour leur toxicité neuronale. / Quinone reductase 2 or QR2 is an enzyme that, like its counterpart QR1, plays a role in detoxification of the highly reactives quinones by reducing them into hydroquinones. On one hand, it has been observed at the cellular and tissue level that the activity of this flavoprotein could have deleterious effects by triggering an overproduction of reactive oxygen species (ROS). On the other hand, overexpression or under expression of QR2 has been observed in some neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. In this context, this work focused on the study of reactive oxygen species produced during the quinone / QR2 redox cycle and their variations depending on the nature of the quinone, on both purified protein and cell models, in comparison to QR1. The redox properties of the substrates, co-substrates and inhibitors ok QR2 studied by electrochemistry allowed to classify them according to their capacity to be reduced. The enzymatic activity of the protein, either purified or intracellular, was followed by various methodologies (electron paramagnetic resonance, UV-visible and fluorescence spectroscopy, U(H)PLC-MS, confocal fluorescence microscopy). Production of superoxide radical is observed in the presence of cell lines overexpressing or not QR1 and QR2. Quinones are reduced enzymatically to form hydroquinones via the activity of quinone reductase (QR1 and QR2) and semiquinone via the activity of one electron reductases (e.g. CytP540 reductase). Reoxidation of these products is responsible for a greater or lesser production of the superoxide radical, according to the initial structure of the quinone and the affinity for different reductases. Menadione causes a higher production of cellular superoxide in the absence of QR1 and QR2. These analyzes have also shown that, like its counterpart QR1, QR2 is capable of reducing ortho-quinones including catecholquinones (aminochrome, dopachrome, adrenochrome) known for their neuronal toxicity.
|
Page generated in 0.0392 seconds