• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 3
  • Tagged with
  • 23
  • 23
  • 11
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Dose savings in digital breast tomosynthesis through image processing / Redução da dose de radiação em tomossíntese mamária através de processamento de imagens

Borges, Lucas Rodrigues 14 June 2017 (has links)
In x-ray imaging, the x-ray radiation must be the minimum necessary to achieve the required diagnostic objective, to ensure the patients safety. However, low-dose acquisitions yield images with low quality, which affect the radiologists image interpretation. Therefore, there is a compromise between image quality and radiation dose. This work proposes an image restoration framework capable of restoring low-dose acquisitions to achieve the quality of full-dose acquisitions. The contribution of the new method includes the capability of restoring images with quantum and electronic noise, pixel offset and variable detector gain. To validate the image processing chain, a simulation algorithm was proposed. The simulation generates low-dose DBT projections, starting from fulldose images. To investigate the feasibility of reducing the radiation dose in breast cancer screening programs, a simulated pre-clinical trial was conducted using the simulation and the image processing pipeline proposed in this work. Digital breast tomosynthesis (DBT) images from 72 patients were selected, and 5 human observers were invited for the experiment. The results suggested that a reduction of up to 30% in radiation dose could not be perceived by the human reader after the proposed image processing pipeline was applied. Thus, the image processing algorithm has the potential to decrease radiation levels in DBT, also decreasing the cancer induction risks associated with the exam. / Em programas de rastreamento de câncer de mama, a dose de radiação deve ser mantida o mínimo necessário para se alcançar o diagnóstico, para garantir a segurança dos pacientes. Entretanto, imagens adquiridas com dose de radiação reduzida possuem qualidade inferior. Assim, existe um equilíbrio entre a dose de radiação e a qualidade da imagem. Este trabalho propõe um algoritmo de restauração de imagens capaz de recuperar a qualidade das imagens de tomossíntese digital mamária, adquiridas com doses reduzidas de radiação, para alcançar a qualidade de imagens adquiridas com a dose de referência. As contribuições do trabalho incluem a melhoria do modelo de ruído, e a inclusão das características do detector, como o ganho variável do ruído quântico. Para a validação a cadeia de processamento, um método de simulação de redução de dose de radiação foi proposto. Para investigar a possibilidade de redução de dose de radiação utilizada na tomossíntese, um estudo pré-clínico foi conduzido utilizando o método de simulação proposto e a cadeia de processamento. Imagens clínicas de tomossíntese mamária de 72 pacientes foram selecionadas e cinco observadores foram convidados para participar do estudo. Os resultados sugeriram que, após a utilização do processamento proposto, uma redução de 30% de dose de radiação pôde ser alcançada sem que os observadores percebessem diferença nos níveis de ruído e borramento. Assim, o algoritmo de processamento tem o potencial de reduzir os níveis de radiação na tomossíntese mamária, reduzindo também os riscos de indução do câncer de mama.
22

Redução de ruído para sistemas de reconhecimento de voz utilizando subespaços vetoriais. / Noise reduction for speech recognition systems using vector subspaces.

SANTOS JÚNIOR, Gutemberg Gonçalves dos. 20 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-20T20:10:09Z No. of bitstreams: 1 GUTEMBERG GONÇALVES DOS SANTOS JÚNIOR - DISSERTAÇÃO PPGEE 2009..pdf: 2756190 bytes, checksum: 5812d37f7ad4c18eb26e9672d4890812 (MD5) / Made available in DSpace on 2018-08-20T20:10:09Z (GMT). No. of bitstreams: 1 GUTEMBERG GONÇALVES DOS SANTOS JÚNIOR - DISSERTAÇÃO PPGEE 2009..pdf: 2756190 bytes, checksum: 5812d37f7ad4c18eb26e9672d4890812 (MD5) Previous issue date: 2009-05-08 / O estabelecimento de uma interface de comunicação através da voz entre seres humanos e computadores vem sendo perseguido desde o início da era da computação. Nesta direção, diversos avanços foram realizados nas últimas seis décadas, permitindo o uso comercial de aplicações com reconhecimento de voz nos dias atuais. Entretanto, fatores como ruídos, reverberações, distorções entre outros, comprometem o desempenho desses sistemas ao reduzir a taxa de acerto quando submetidos a ambientes adversos. Assim, o estudo de técnicas que diminuam os efeitos desses problemas é de grande valia e vem ganhando destaque nas últimas décadas. O trabalho apresentado nesta dissertação tem como objetivo a redução dos problemas referentes aos ruídos característicos de ambientes automotivos, tornando os sistemas de reconhecimento de voz utilizados nesses ambientes mais robustos. Dessa forma, o controle de funcionalidades não-críticas de um automóvel, ou seja, funcionalidades que não coloquem em risco a vida do usuário como tocadores de música e ar condicionado, pode ser realizado através de comandos de voz. O sistema proposto é baseado numa etapa de pré-processamento do sinal de voz através do método de subespaços vetoriais. O desempenho deste método está diretamente relacionado com as dimensões (linhas× colunas) das matrizes representativas do sinal de entrada. Levando isso em consideração, a decomposição ULLV, apesar de se tratar de uma aproximação do método de subespaços vetoriais, foi utilizada por oferecer uma menor complexidade computacional quando comparada a métodos tradicionais baseados na decomposição SVD. O sistema de reconhecimento de voz Julius foi o escolhido para o estudo de caso por se tratar de um sistema desenvolvido em código livre que oferece um alto desempenho. Um banco de dados de voz com 44800 amostras foi gerado com o modelo de um ambiente automotivo. Por fim, a robustez do sistema foi avaliada e comparada com um método tradicional de redução de ruído chamado subtração espectral. / The establishment of a speech-based communication interface between humans and computers has been pursued since the beginning of the computer era. Several studies have been made over the last six decades in order to accomplish this interface, making possible commercial use of speech recognition applications. However, factors such as noise, reverberation, distortion among others degrades the performance of these systems. Thus, reducing their success rate when operating in adverse environments. With this in mind, the study of techniques to reduce the impact of these problems is of a great value and has gained prominence in recent decades. The work presented in this dissertation aims to reduce problems related to noise encountered in an automotive environment, improving the speech recognition system robustness. Thus,controlofnon-critical features of a car, such as CD player and air conditioning, can be performed through voice commands. The proposed system is based on a speech signal preprocessing step using the signal subspace method. Its performance is related to the size (lines× columns) of the matrices that represents the input signal. Therefore, the ULLV decomposition was used because it offers a lower computational complexity compared to traditional methods based on SVD decomposition. The speech recognizer Julius is an open source software that offers high performance and was the chosen one for the case study. A noisy speech database with 44800 samples was generated to model the automotive environment. Finally, the robustness of the system was evaluated and compared with a traditional method of noise reduction called spectral subtraction.
23

Dose savings in digital breast tomosynthesis through image processing / Redução da dose de radiação em tomossíntese mamária através de processamento de imagens

Lucas Rodrigues Borges 14 June 2017 (has links)
In x-ray imaging, the x-ray radiation must be the minimum necessary to achieve the required diagnostic objective, to ensure the patients safety. However, low-dose acquisitions yield images with low quality, which affect the radiologists image interpretation. Therefore, there is a compromise between image quality and radiation dose. This work proposes an image restoration framework capable of restoring low-dose acquisitions to achieve the quality of full-dose acquisitions. The contribution of the new method includes the capability of restoring images with quantum and electronic noise, pixel offset and variable detector gain. To validate the image processing chain, a simulation algorithm was proposed. The simulation generates low-dose DBT projections, starting from fulldose images. To investigate the feasibility of reducing the radiation dose in breast cancer screening programs, a simulated pre-clinical trial was conducted using the simulation and the image processing pipeline proposed in this work. Digital breast tomosynthesis (DBT) images from 72 patients were selected, and 5 human observers were invited for the experiment. The results suggested that a reduction of up to 30% in radiation dose could not be perceived by the human reader after the proposed image processing pipeline was applied. Thus, the image processing algorithm has the potential to decrease radiation levels in DBT, also decreasing the cancer induction risks associated with the exam. / Em programas de rastreamento de câncer de mama, a dose de radiação deve ser mantida o mínimo necessário para se alcançar o diagnóstico, para garantir a segurança dos pacientes. Entretanto, imagens adquiridas com dose de radiação reduzida possuem qualidade inferior. Assim, existe um equilíbrio entre a dose de radiação e a qualidade da imagem. Este trabalho propõe um algoritmo de restauração de imagens capaz de recuperar a qualidade das imagens de tomossíntese digital mamária, adquiridas com doses reduzidas de radiação, para alcançar a qualidade de imagens adquiridas com a dose de referência. As contribuições do trabalho incluem a melhoria do modelo de ruído, e a inclusão das características do detector, como o ganho variável do ruído quântico. Para a validação a cadeia de processamento, um método de simulação de redução de dose de radiação foi proposto. Para investigar a possibilidade de redução de dose de radiação utilizada na tomossíntese, um estudo pré-clínico foi conduzido utilizando o método de simulação proposto e a cadeia de processamento. Imagens clínicas de tomossíntese mamária de 72 pacientes foram selecionadas e cinco observadores foram convidados para participar do estudo. Os resultados sugeriram que, após a utilização do processamento proposto, uma redução de 30% de dose de radiação pôde ser alcançada sem que os observadores percebessem diferença nos níveis de ruído e borramento. Assim, o algoritmo de processamento tem o potencial de reduzir os níveis de radiação na tomossíntese mamária, reduzindo também os riscos de indução do câncer de mama.

Page generated in 0.0462 seconds