• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementation of Reduced Mechanism in Complex Chemically Reacting Flows

Maktal, Jathaveda 03 April 2009 (has links)
No description available.
2

Numerical Modeling of Soot Formation in Diffusion Flames

Selvaraj, Prabhu 11 1900 (has links)
The combustion of petroleum-based fuels leads to the formation of several pollutants. Among them, soot particles are particularly harmful due to their severe consequences on human health. Over the past decades, strict regulations have been placed on automotive and aircraft engines to limit these particulate matter emissions. This work is primarily focused on understanding the fundamental behaviour of soot particles and their formation. Though the focus of this work is on soot formation and growth pathways, the study of the gas-phase combustion process was also an integral part to validate the mechanism. A reduced mechanism is developed with retaining the larger PAH species till coronene from KAUST-ARAMCO mechanism. Counterflow diffusion flames had emphasized the simulation of canonical configuration where the reduced mechanism is validated and the soot growth pathways are evaluated. The importance of the significant contribution of larger PAH species on the soot growth pathways in both SF and SFO flames is evident in this analysis. The sensitivity of these flames with respect to strain rates, dilution, and at higher pressures are analysed. Direct Numerical Simulation (DNS) of two-dimensional counterflow diffusion flames is conducted to understand the impact of vortex interactions on soot characteristics. The results indicate that the larger PAH species contributes to the soot formation in the air-side perturbation regimes, whereas the soot formation is dominated by the soot transport in fuel-side perturbation. The study is extended to simulate and compare coflow laminar flame using different statistical moment methods MOMIC, HMOM and CQMOM.
3

Study of multi-component fuel premixed combustion using direct numerical simulation

Nikolaou, Zacharias M. January 2014 (has links)
Fossil fuel reserves are projected to be decreasing, and emission regulations are becoming more stringent due to increasing atmospheric pollution. Alternative fuels for power generation in industrial gas turbines are thus required able to meet the above demands. Examples of such fuels are synthetic gas, blast furnace gas and coke oven gas. A common characteristic of these fuels is that they are multi-component fuels, whose composition varies greatly depending on their production process. This implies that their combustion characteristics will also vary significantly. Thus, accurate and yet flexible enough combustion sub-models are required for such fuels, which are used during the design stage, to ensure optimum performance during practical operating conditions. Most combustion sub-model development and validation is based on Direct Numerical Simulation (DNS) studies. DNS however is computationally expensive. This, has so far limited DNS to single-component fuels such as methane and hydrogen. Furthermore, the majority of DNS conducted to date used one-step chemistry in 3D, and skeletal chemistry in 2D only. The need for 3D DNS using skeletal chemistry is thus apparent. In this study, an accurate reduced chemical mechanism suitable for multi-component fuel-air combustion is developed from a skeletal mechanism. Three-dimensional DNS of a freely propagating turbulent premixed flame is then conducted using both mechanisms to shed some light into the flame structure and turbulence-scalar interaction of such multi-component fuel flames. It is found that for the multi-component fuel flame heat is released over a wider temperature range contrary to a methane flame. This, results from the presence of individual species reactions zones which do not all overlap. The performance of the reduced mechanism is also validated using the DNS data. Results suggest it to be a good substitute of the skeletal mechanism, resulting in significant time and memory savings. The flame markers commonly used to visualize heat release rate in laser diagnostics are found to be inadequate for the multi-component fuel flame, and alternative markers are proposed. Finally, some popular mean reaction rate closures are tested for the multi-component fuel flame. Significant differences are observed between the models’ performance at the highest turbulence level considered in this study. These arise from the chemical complexity of the fuel, and further parametric studies using skeletal chemistry DNS would be useful for the refinement of the models.

Page generated in 0.0605 seconds