• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calibration Bayésienne d'un modèle d'étude d'écosystème prairial : outils et applications à l'échelle de l'Europe / no title available

Ben Touhami, Haythem 07 March 2014 (has links)
Les prairies représentent 45% de la surface agricole en France et 40% en Europe, ce qui montre qu’il s’agit d’un secteur important particulièrement dans un contexte de changement climatique où les prairies contribuent d’un côté aux émissions de gaz à effet de serre et en sont impactées de l’autre côté. L’enjeu de cette thèse a été de contribuer à l’évaluation des incertitudes dans les sorties de modèles de simulation de prairies (et utilisés dans les études d’impact aux changements climatiques) dépendant du paramétrage du modèle. Nous avons fait appel aux méthodes de la statistique Bayésienne, basées sur le théorème de Bayes, afin de calibrer les paramètres d’un modèle référent et améliorer ainsi ses résultats en réduisant l’incertitude liée à ses paramètres et, par conséquent, à ses sorties. Notre démarche s’est basée essentiellement sur l’utilisation du modèle d’écosystème prairial PaSim, déjà utilisé dans plusieurs projets européens pour simuler l’impact des changements climatiques sur les prairies. L’originalité de notre travail de thèse a été d’adapter la méthode Bayésienne à un modèle d’écosystème complexe comme PaSim (appliqué dans un contexte de climat altéré et à l’échelle du territoire européen) et de montrer ses avantages potentiels dans la réduction d’incertitudes et l’amélioration des résultats, en combinant notamment méthodes statistiques (technique Bayésienne et analyse de sensibilité avec la méthode de Morris) et outils informatiques (couplage code R-PaSim et utilisation d’un cluster de calcul). Cela nous a conduit à produire d’abord un nouveau paramétrage pour des sites prairiaux soumis à des conditions de sécheresse, et ensuite à un paramétrage commun pour les prairies européennes. Nous avons également fourni un outil informatique de calibration générique pouvant être réutilisé avec d’autres modèles et sur d’autres sites. Enfin, nous avons évalué la performance du modèle calibré par le biais de la technique Bayésienne sur des sites de validation, et dont les résultats ont confirmé l’efficacité de cette technique pour la réduction d’incertitude et l’amélioration de la fiabilité des sorties. / Grasslands cover 45% of the agricultural area in France and 40% in Europe. Grassland ecosystems have a central role in the climate change context, not only because they are impacted by climate changes but also because grasslands contribute to greenhouse gas emissions. The aim of this thesis was to contribute to the assessment of uncertainties in the outputs of grassland simulation models, which are used in impact studies, with focus on model parameterization. In particular, we used the Bayesian statistical method, based on Bayes’ theorem, to calibrate the parameters of a reference model, and thus improve performance by reducing the uncertainty in the parameters and, consequently, in the outputs provided by models. Our approach is essentially based on the use of the grassland ecosystem model PaSim (Pasture Simulation model) already applied in a variety of international projects to simulate the impact of climate changes on grassland systems. The originality of this thesis was to adapt the Bayesian method to a complex ecosystem model such as PaSim (applied in the context of altered climate and across the European territory) and show its potential benefits in reducing uncertainty and improving the quality of model outputs. This was obtained by combining statistical methods (Bayesian techniques and sensitivity analysis with the method of Morris) and computing tools (R code -PaSim coupling and use of cluster computing resources). We have first produced a new parameterization for grassland sites under drought conditions, and then a common parameterization for European grasslands. We have also provided a generic software tool for calibration for reuse with other models and sites. Finally, we have evaluated the performance of the calibrated model through the Bayesian technique against data from validation sites. The results have confirmed the efficiency of this technique for reducing uncertainty and improving the reliability of simulation outputs.
2

Methodology for the conceptual design of a robust and opportunistic system-of-systems

Talley, Diana Noonan 18 November 2008 (has links)
Systems are becoming more complicated, complex, and interrelated. Designers have recognized the need to develop systems from a holistic perspective and design them as Systems-of-Systems (SoS). The design of the SoS, especially in the conceptual design phase, is generally characterized by significant uncertainty. As a result, it is possible for all three types of uncertainty (aleatory, epistemic, and error) and the associated factors of uncertainty (randomness, sampling, confusion, conflict, inaccuracy, ambiguity, vagueness, coarseness, and simplification) to affect the design process. While there are a number of existing SoS design methods, several gaps have been identified: the ability to modeling all of the factors of uncertainty at varying levels of knowledge; the ability to consider both the pernicious and propitious aspects of uncertainty; and, the ability to determine the value of reducing the uncertainty in the design process. While there are numerous uncertainty modeling theories, no one theory can effectively model every kind of uncertainty. This research presents a Hybrid Uncertainty Modeling Method (HUMM) that integrates techniques from the following theories: Probability Theory, Evidence Theory, Fuzzy Set Theory, and Info-Gap theory. The HUMM is capable of modeling all of the different factors of uncertainty and can model the uncertainty for multiple levels of knowledge. In the design process, there are both pernicious and propitious characteristics associated with the uncertainty. Existing design methods typically focus on developing robust designs that are insensitive to the associated uncertainty. These methods do not capitalize on the possibility of maximizing the potential benefit associated with the uncertainty. This research demonstrates how these deficiencies can be overcome by identifying the most robust and opportunistic design. In a design process it is possible that the most robust and opportunistic design will not be selected from the set of potential design alternatives due to the related uncertainty. This research presents a process called the Value of Reducing Uncertainty Method (VRUM) that can determine the value associated with reducing the uncertainty in the design problem before a final decision is made by utilizing two concepts: the Expected Value of Reducing Uncertainty (EVRU) and the Expected Cost to Reducing Uncertainty (ECRU).
3

Reducing turbulence- and transition-driven uncertainty in aerothermodynamic heating predictions for blunt-bodied reentry vehicles

Ulerich, Rhys David 24 October 2014 (has links)
Turbulent boundary layers approximating those found on the NASA Orion Multi-Purpose Crew Vehicle (MPCV) thermal protection system during atmospheric reentry from the International Space Station have been studied by direct numerical simulation, with the ultimate goal of reducing aerothermodynamic heating prediction uncertainty. Simulations were performed using a new, well-verified, openly available Fourier/B-spline pseudospectral code called Suzerain equipped with a ``slow growth'' spatiotemporal homogenization approximation recently developed by Topalian et al. A first study aimed to reduce turbulence-driven heating prediction uncertainty by providing high-quality data suitable for calibrating Reynolds-averaged Navier--Stokes turbulence models to address the atypical boundary layer characteristics found in such reentry problems. The two data sets generated were Ma[approximate symbol] 0.9 and 1.15 homogenized boundary layers possessing Re[subscript theta, approximate symbol] 382 and 531, respectively. Edge-to-wall temperature ratios, T[subscript e]/T[subscript w], were close to 4.15 and wall blowing velocities, v[subscript w, superscript plus symbol]= v[subscript w]/u[subscript tau], were about 8 x 10-3 . The favorable pressure gradients had Pohlhausen parameters between 25 and 42. Skin frictions coefficients around 6 x10-3 and Nusselt numbers under 22 were observed. Near-wall vorticity fluctuations show qualitatively different profiles than observed by Spalart (J. Fluid Mech. 187 (1988)) or Guarini et al. (J. Fluid Mech. 414 (2000)). Small or negative displacement effects are evident. Uncertainty estimates and Favre-averaged equation budgets are provided. A second study aimed to reduce transition-driven uncertainty by determining where on the thermal protection system surface the boundary layer could sustain turbulence. Local boundary layer conditions were extracted from a laminar flow solution over the MPCV which included the bow shock, aerothermochemistry, heat shield surface curvature, and ablation. That information, as a function of leeward distance from the stagnation point, was approximated by Re[subscript theta], Ma[subscript e], [mathematical equation], v[subscript w, superscript plus sign], and T[subscript e]/T[subscript w] along with perfect gas assumptions. Homogenized turbulent boundary layers were initialized at those local conditions and evolved until either stationarity, implying the conditions could sustain turbulence, or relaminarization, implying the conditions could not. Fully turbulent fields relaminarized subject to conditions 4.134 m and 3.199 m leeward of the stagnation point. However, different initial conditions produced long-lived fluctuations at leeward position 2.299 m. Locations more than 1.389 m leeward of the stagnation point are predicted to sustain turbulence in this scenario. / text

Page generated in 0.0637 seconds