• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reduction of iron ore fines in the Ifcon furnace

Lourens, Leon 19 August 2008 (has links)
This work involved an investigation into the mechanisms governing the reduction of material in the solids bed of the Ifcon® process. Thermo gravimetric analyses were done to investigate the influence of various operational parameters on the rate of solid state reduction. The experiments were modeled, and model predictions were compared to experimental results. Kinetic data was analised and the reduction rate constants were calculated. The rate constants were used as inputs to a model, which describes the reduction behaviour and temperature profile in a composite solids bed (similar to that in the Ifcon® process). High temperature reduction- and melting tests were done in an 150 kW induction furnace, to simulate final reduction in a solids bed. The temperature profile through the solids bed was measured and results were compared to model predictions. Finally the extent to which solid state reduction occurs in the solids bed was estimated as a function of production rate. / Dissertation (MEng (Metallurgical Engineering))--University of Pretoria, 2008. / Materials Science and Metallurgical Engineering / unrestricted
2

Some aspects on the reduction of olivine pellets in laboratory scale and in an experimental blast furnace

Sterneland, Jerker January 2002 (has links)
The reduction behaviour of the olivine iron ore pellet MPBOwas studied in laboratory scale at KTH as well as in the LKABexperimental blast furnace. Initially, a newreduction-under-load, or so-called reduction/softening/melting,test equipment was developed. Experiments using differentreducing conditions, corresponding to different radialpositions of the blast furnace, were conducted. The experimentsincluded different temperature profiles, reducing atmospheresand mechanical loads applied on the sample bed to simulate thevarying conditions in the blast furnace process. The progressof reduction was investigated, as well as the processes ofsintering and contraction during reduction. A model of thecarburisation (pick-up of carbon by the reduced iron) andmelt-down process during rapid contraction was presented. Laboratory testing of MPBO pellets was compared with resultsfrom the LKAB experimental blast furnace. The reduction of ironore pellets in the experimental blast furnace was surveyed by adissection of the furnace after quenching. The high temperaturephenomena occurring when reducing the MPBO pellet, with limitedsoftening and a short temperature range of the melting process,resulting in a thin cohesive zone, were found to be the same inlaboratorytests and in the experimental blast furnace. Thereduction down through the burden of the experimental blastfurnace was similar, but not identical to the results of theRUL experiments. The differences were found to be due todifferent reducing conditions. Therefore, it was concluded thata simulation of the reduction occurring in the blast furnacecan be performed in laboratory scale, provided the experimentalconditions are correctly chosen. Finally, a modification to further improve the properties ofthe MPBO pellets was examined. With the aim to improve theblast furnace process, coating of blast furnace pellets wasinvestigated in laboratory scale, as well as in the LKABexperimental blast furnace. Olivine, dolomite and quartzitewere used as coating agents. In laboratory scale the stickingprevention action of the different coating materials wasverified, in established test methods as well as in new testmethods, modified for blast furnace conditions. Testing of thecoated pellets in the experimental blast furnace revealedseveral advantages; significantly reduced blast furnace fluedust generation, improved gas utilisation and a smoother blastfurnace operation with a potential for a lowered fuel rate. <b>Keywords:</b>Olivine, pellets, pellet testing,reduction/softening/melting, MPBO, blast furnace, reduction,quenching, dissection, coating, sticking, coated pellets.
3

Some aspects on the reduction of olivine pellets in laboratory scale and in an experimental blast furnace

Sterneland, Jerker January 2002 (has links)
<p>The reduction behaviour of the olivine iron ore pellet MPBOwas studied in laboratory scale at KTH as well as in the LKABexperimental blast furnace. Initially, a newreduction-under-load, or so-called reduction/softening/melting,test equipment was developed. Experiments using differentreducing conditions, corresponding to different radialpositions of the blast furnace, were conducted. The experimentsincluded different temperature profiles, reducing atmospheresand mechanical loads applied on the sample bed to simulate thevarying conditions in the blast furnace process. The progressof reduction was investigated, as well as the processes ofsintering and contraction during reduction. A model of thecarburisation (pick-up of carbon by the reduced iron) andmelt-down process during rapid contraction was presented.</p><p>Laboratory testing of MPBO pellets was compared with resultsfrom the LKAB experimental blast furnace. The reduction of ironore pellets in the experimental blast furnace was surveyed by adissection of the furnace after quenching. The high temperaturephenomena occurring when reducing the MPBO pellet, with limitedsoftening and a short temperature range of the melting process,resulting in a thin cohesive zone, were found to be the same inlaboratorytests and in the experimental blast furnace. Thereduction down through the burden of the experimental blastfurnace was similar, but not identical to the results of theRUL experiments. The differences were found to be due todifferent reducing conditions. Therefore, it was concluded thata simulation of the reduction occurring in the blast furnacecan be performed in laboratory scale, provided the experimentalconditions are correctly chosen.</p><p>Finally, a modification to further improve the properties ofthe MPBO pellets was examined. With the aim to improve theblast furnace process, coating of blast furnace pellets wasinvestigated in laboratory scale, as well as in the LKABexperimental blast furnace. Olivine, dolomite and quartzitewere used as coating agents. In laboratory scale the stickingprevention action of the different coating materials wasverified, in established test methods as well as in new testmethods, modified for blast furnace conditions. Testing of thecoated pellets in the experimental blast furnace revealedseveral advantages; significantly reduced blast furnace fluedust generation, improved gas utilisation and a smoother blastfurnace operation with a potential for a lowered fuel rate.</p><p><b>Keywords:</b>Olivine, pellets, pellet testing,reduction/softening/melting, MPBO, blast furnace, reduction,quenching, dissection, coating, sticking, coated pellets.</p>

Page generated in 0.1452 seconds