• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PLASMA DENSITY REDUCTION USING ELECTROMAGNETIC E×B FIELD DURING REENTRY FLIGHT

Kim, Minkwan, Keidar, Michael, Boyd, Iain D., Morris, David 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / As a vehicle reenters or flies at hypersonic speed through the atmosphere, the surrounding air is shock heated and becomes weakly ionized. The plasma layer thus formed causes a communication problem known as ‘radio blackout’. At sufficiently dense plasma conditions, the plasma layer either reflects or attenuates radio wave communications to and from the vehicle. In this paper, we propose an electromagnetic field configuration as a method to allow communication through the plasma layer. Theoretical models show that this may address the blackout problem under a range of conditions. Preliminary experimental results are also presented.
2

PLASMA TELEMETRY IN HYPERSONIC FLIGHT

Starkey, Ryan P., Lewis, Mark J., Jones, Charles H. 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / Problems associated with telemetry blackout caused by the plasma sheath surrounding a hypersonic vehicle are addressed. In particular, the critical nature of overcoming this limitation for test and evaluation purposes is detailed. Since the telemetry blackout causes great concern for atmospheric cruise vehicles, ballistic missiles, and reentry vehicles, there have been many proposed approaches to solving the problem. This paper overviews aerodynamic design methodologies, for which the required technologies are only now being realized, which may allow for uninterrupted transmission through a plasma sheath. The severity of the signal attenuation is dependent on vehicle configuration, trajectory, flightpath, and mission.

Page generated in 0.0887 seconds