Spelling suggestions: "subject:"refrigerants."" "subject:"refrigerantes.""
51 |
Time-fractional analysis of flow patterns during refrigerant condensationVan Rooyen, Eugene. January 2007 (has links)
Thesis (M. Eng.(Mechanical and Aeronautical Engineering))--Universiteit van Pretoria, 2007. / Abstract in English. Includes bibliographical references.
|
52 |
An experimental study of ammonia-water bubble absorption in a constrained microscale film /Jenks, Jeromy W. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2008. / Printout. Includes bibliographical references (leaves 79-81). Also available on the World Wide Web.
|
53 |
Thermal performance of the retrofitted R134a refrigeration system by using mixtures of R600a and R290.Ramathe, Teboho. January 2015 (has links)
M. Tech. Mechanical Engineering.
|
54 |
Ebulição convectiva de refrigerantes halogenados escoando no interior de tubos horizontais de cobre / Convective boiling of halocarbon refrigerants flowing in horizontal copper tubesCarlos Umberto da Silva Lima 07 April 2000 (has links)
A presente pesquisa teve por objetivo o estudo da ebulição convectiva dos novos refrigerantes halogenados no interior de tubos horizontais de cobre. Uma busca na literatura pertinente ao assunto mostrou que a determinação do coeficiente de transferência de calor pode ser determinado por correlações que, aqui, foram classificadas como: 1- Estritamente Convectivas, 2- Superposição de Efeitos e 3- Estritamente Empíricas. Essas correlações mostraram-se inadequadas a generalizações. Uma bancada experimental foi concebida e construída, o que permitiu a obtenção de dados experimentais envolvendo uma ampla faixa de condições operacionais. Efeitos de parâmetros físicos como a velocidade mássica, fluxo de calor, temperatura de saturação e título, foram investigados. Os dados experimentais obtidos foram utilizados no desenvolvimento de uma correlação para o coeficiente de transferência de calor na ebulição convectiva que satisfizesse adequadamente esses dados obtidos para condições operacionais típicas de aplicações frigoríficas. A partir da análise efetuada foi proposto um modelo no qual foram introduzidos os adimensionais que envolvem os principais efeitos relacionados à mudança de fase. O modelo proposto apresentou resultados bastante adequados não apenas na correlação dos resultados experimentais obtidos na presente pesquisa como também em dados encontrados na literatura. / Present research has aimed at the study of convective boiling of recently introduced halocarbon refrigerants inside horizontal copper tubes. A comprehensive literature survey has revealed that the correlations for the convective boiling heat transfer coefficient can be divided into three main categories: (1) strictly convective; (2) superposition of effects; (3) strictly empirical. As a general rule these correlations are not fitted for generalizations. An experimental set up has been developed and constructed in order to raise data involving a relatively wide range of operational conditions. These data have been used to investigate effects of such parameters as heat flux, mass velocity, quality and evaporating temperature. In addition gathered data have been used in the development of a correlation for the heat transfer coefficient under convective boiling conditions typical of refrigeration applications. The model has been developed in terms of the main intervening non dimensional groups. The proposed equation correlated very well not only experimental data from present investigation but data obtained else where.
|
55 |
Análise teórica e experimental da ebulição nucleada de refrigerantes halogenados / Theoretical and experimental analysis of pool boiling of halocarbon refrigerantsGherhardt Ribatski 08 April 2002 (has links)
O estudo consistiu em uma análise teórica experimental, com o desenvolvimento de uma correlação, dos parâmetros que afetam a ebulição nucleada de refrigerantes halogenados em superfícies cilíndricas lisas. Uma ampla análise da literatura permitiu levantar os distintos tópicos envolvendo este tema destacando entre eles o presente estudo. A análise da literatura envolveu, ainda, um estudo detalhado dos fundamentos da ebulição e das correlações para a previsão do coeficiente de transferência de calor. Foi projetado e construído um aparato experimental no qual foram realizados ensaios envolvendo superfícies de aço inoxidável, cobre e latão, os refrigerantes R-11, R-123, R-12, R-22 e R-134a, fluxos específicos de calor entre 0,8 e 120 kW/m², pressões reduzidas de 0,008 a 0,26 e rugosidade aritmética média variando entre 0,02 e 3,3 μm. A análise destes resultados possibilitou a verificação de comportamentos físicos inéditos segundo a literatura consultada. Destaca-se a análise de efeitos da condução longitudinal e da resistência térmica de contato entre a superfície de transferência de calor e os termopares. Esta análise foi incorporada ao procedimento de determinação da temperatura superficial, e permitiu estabelecer a distribuição de temperaturas ao longo do perímetro da superfície. Finalmente, com base no banco de dados levantado, foi desenvolvida uma correlação para o coeficiente de transferência de calor em ebulição nucleada plenamente desenvolvida de refrigerantes halogenados. / The present research has been focused in a theoretical and experimental analysis of the parameters that affect the pool boiling of halocarbon refrigerants in smooth cylindrical surfaces with the development of a correlation. A wide survey of the literature allowed to list the distinct topics related to this subject and to highlight among them the theme of this study. The literature analysis still involved a detailed study of the pool boiling fundamentals and of the correlations for the pool boiling heat transfer coefficient. An experimental set up has been developed and constructed in which were raise data involving surfaces of stainless steel, copper and brass, the refrigerants R-11, R-123, R-12, R-22 and R-134a, specific heat flux range of 0.8 to 120 kW/m², reduced pressures from 0.008 to 0.26 and arithmetic mean roughness varying between 0.02 and 3.3 μm. The analysis of these results revealed, according to the consulted literature, unpublished physical behaviors. In this work the effects of the longitudinal conduction and of the thermal contact resistance between the heat transfer surface and the thermocouple were analyzed carefully. This analysis was incorporated to the superficial temperature determination procedure and allowed to establish the temperature distribution along the surface perimeter. Finally, using the data base raised in this research, a simple and accurate correlation for the fully developed pool boiling heat transfer coefficient for halocarbon refrigerants applications has been developed.
|
56 |
Efeito da geometria na ebulição nucleada de refrigerantes halogenados em tubos horizontais / Geometry effects in nucleate boiling of halocarbon refrigerants in horizontal tubesEvandro Fockink da Silva 16 September 2005 (has links)
O presente estudo envolve a análise teórico-experimental da transferência de calor através do mecanismo de ebulição em um único tubo e em banco com três tubos horizontais. A análise da literatura permitiu levantar os parâmetros que podem influenciar o coeficiente de transferência de calor na ebulição em banco de tubos e algumas correlações. O aparato experimental foi adaptado para realização de ensaios envolvendo refrigerantes halogenados, 3 tubos dispostos em fileiras paralelas e 3 distintos diâmetros. Nos experimentos foram utilizados os refrigerantes R-11, R-123 (baixa pressão) e R-134a (média pressão), tubos de latão aquecidos internamente com resistências elétricas, com fluxo de calor específico variando entre 1 e 40 kW/'M POT.2'. Através dos resultados foram observados alguns comportamentos inéditos na influência do acabamento superficial e em banco de tubos. Com base no banco de dados levantado, foi desenvolvida uma correlação para o coeficiente de transferência de calor em ebulição em banco de tubos. Os resultados obtidos por esta correlação apresentaram reduzidos desvios em relação aos experimentais. / The research reported herein is a theoretical and experimental investigation of nucleate boiling heat transfer in an isolated tube and a row of three horizontal tubes. The literature review provided enough information to raise the intervening physical parameters and several correlations. The experimental bench has been developed and adapted to perform experiments with several refrigerants, three different tube diameters, and to accommodate a row of three parallel tubes. The experiments have been carried out with refrigerants R-11, R-123 and R-134a. Heating of the brass tubes has been provided by tubular electrical heaters inserted inside the tubes. The heat flux varied from 1 to 40 kW/'M POT.2'. Experiments have been carried out by successively heating two and three tubes. Effects of boiling in tubes underneath (lower level) have been investigated. Finally a correlation for the heat transfer coefficient in successive tubes of a tube bank has been developed. The correlation presents good accuracy with respect to data from the present investigation.
|
57 |
Pool boiling of R-134a and R-123 on smooth and enhanced tubesGorgy, Evraam I. January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Steven J. Eckels, Bruce R. Babin / This project studied the pool boiling of R-134a and R-123 on smooth and enhanced tubes. This is the 1st phase of ASHRAE project RP-1316 "Experimental Evaluation of The Heat Transfer Impacts of Tube Pitch in a Highly Enhanced Surface Tube Bundle". A Turbo BII-HP and a Turbo BII-LP enhanced tubes were used in this study. These tubes were manufactured and donated by Wolverine Tube, Inc. Four different boiling cases were tested, R-134a on smooth tube, R-123 on smooth tube, R-134a on Turbo BII-HP tube, and R-123 on Turbo BII-LP tube. The first step in this study was performing a modified Wilson plot analysis, once completed, the average and local refrigerant heat transfer coefficients were determined. This thesis also presents the enthalpy-based heat transfer analysis (EBHT), a new method for determining the heat exchanger's overall heat transfer coefficient as a function of the enthalpy change of incompressible fluids.
The test tubes' outer diameter is 19.05 mm and length is 1 m. Tests were conducted in a single tube test section, in which the test tube was water heated. All tests were conducted at a saturation temperature of 4.44 °C. The heat flux range is 9.2-126.6 kW/m[superscript]2 for testing with R-134a on smooth tube, 9.2-58 kW/m[superscript]2 for R-123 on smooth tube, 4.1-135.1 kW/m[superscript]2 for R-134a on Turbo BII-HP tube and 4.7-59.8 kW/m[superscript]2 for R-123 on Turbo BII-LP tube. Results show that the heat transfer coefficient increases with heat flux for all cases except the case of R-134a on Turbo BII-HP tube, where it experiences a trend change.
Part of this study was comparing the smooth and enhanced tubes performances. R-134a Turbo BII-HP tube to smooth tube heat transfer coefficient ratio changes from 4 at low heat flux to 1.7 at high heat flux. R-123 Turbo BII-LP tube to smooth tube heat transfer coefficient ratio changes from 24 at low heat flux to 7 at high heat flux. The performance of Turbo BII-HP and Turbo BII-LP was found to be very similar over the tested heat flux range of the Turbo BII-LP tube. Comparison plots with available literature are presented.
|
58 |
Performance Evaluation Of Vapour Compression System With Environment Friendly Refrigerant MixturesNannaware, Ajay S 08 1900 (has links) (PDF)
No description available.
|
59 |
An Experimental Investigation On The Dynamics Of Bubbles Utilizing Refrigerant R134a Under Pressurized Flow Boiling ConditionsVereen, Keon 01 January 2011 (has links)
Flow boiling heat transfer allows for the dissipation of large amounts of heat. In this work, the effect of heat flux and pressure on flow boiling of liquid refrigerant R-134a is studied in a vertical thin channel. The experimental setup mimics a refrigeration cycle and specifically looks at the effect of pressure and wall heat flux on the departure size and bubble generation rate. The experimental setup consists of a closed loop which includes a vertical narrow rectangular channel and two synchronized high speed cameras for optical measurements at either sides of the channel. The setup is built to employ an accurate measurement technique to define wall temperatures of the representative flow boiling process. Instead of using thermocouples on the surface channel, the thermochromic liquid crystallography (TLC) technique is used to determine non-invasively the heater surface temperature at high temporal and spatial resolution. The TLC interval range is 30-50°C. The TLC is attached to a Fecralloy heating section. The high speed Prosilica cameras simultaneously capture, colored TLC images as well as bubble nucleation and departure at very high frame rates. Experiments on subcooled flow boiling heat transfer have been conducted with refrigerant R-134a under a mass flux range of 484.838 kg/m2 s to 1212.1 kg/m2 s. With the low mass flux, the wall heat flux ranged from 167.2 to 672.1 kW/m2 , the inlet subcooling ranged from 0.35°C to 16.55 °C, the system pressure ranged from 621 kPa to 1034 kPa. At high mass flux, the wall heat flux ranged from 329.8 kW/m2 to 744 kW/m2 , the iv inlet subcooling from 0.16°C to 17.21 °C, and the system pressure from 621 kPa to 1034 kPa. A parametric study was done by maintaining various input parameters constant. From the high speed images, bubble parameters such as size and frequency are calculated. Temperature contours are utilized to determine the surface wall temperature at specific points. Sequential wall temperatures are traced over a short period of time to understand the cooling effects. The bubble propagation and coalescence are also visualized. Results show that bubble size and frequency increased with heat flux at any particular pressure. At higher pressure, the trend would be for the bubble size to decrease; however, the inlet subcooling and heat flux also affect bubble size. The bubble frequency is also seen to be affected by the inlet subcooling and the heat flux. Even though the inlet subcooling is maintained approximately constant, any slight decrease in subcooling increased bubble growth rate. Another trend that is observed is that at higher the heat flux, the bubble generation frequency is faster; however no specific trend is observed for wall superheat. With an increase in heat flux, the wall superheats are expected to increase; however, the localized nature of the nucleation activity sites is seen to affect the results. The variables are non-dimensionalized to note trends in parameters. In summary, the data analysis demonstrates that both heat flux and pressure significantly influence the bubble generation rate, size, propagation and coalescence.
|
60 |
High capacity heat pump development for sanitary hot water productionPitarch i Mocholí, Miquel 29 May 2017 (has links)
Heat pumps have been identified as an efficient alternative to traditional boilers for the production of sanitary hot water (SHW). The high water temperature lift (usually from 10ºC to 60ºC) involved in this application has conditioned the type of used solutions. On the one hand, transcritical cycles have been considered as one of the most suitable solutions to overcome the high water temperature lift. Nevertheless, the performance of the transcritical CO2 heat pump is quite dependent on the water inlet temperature, which in many cases is above 10ºC. Furthermore, performance highly depends on the rejection pressure, which needs to be controlled to work at the optimum point in any condition. On the other hand, for the subcritical systems, subcooling seems to be critical for the heat pump performance when working at high temperature lifts, but there is not any published work that optimizes subcooling in the SHW application for these systems. Therefore, the subcritical cycle should require a systematic study on the subcooling that optimizes COP depending on the external conditions, in the same way as it has been done for the rejection pressure in the transcritical cycle.
The aim of this thesis is to investigate the role of subcooling in the performance of a Propane water-to-water heat pump for SHW production, in the application of heat recovery from any water source. Two different approaches to overcome the high degree of subcooling were designed and built to test them in the laboratory:
1) Subcooling is made at the condenser: The active refrigerant charge of the system is controlled by a throttling valve. Subcooling is controlled independently at any external condition.
2) Subcooling is made in a separate heat exchanger, the subcooler. Subcooling is not controlled, it depends on the external condition and the heat transfer at the subcooler.
The heat pumps were tested at different water temperatures at the evaporator inlet (10ºC to 35ºC) and condenser inlet (10ºC to 55ºC), while the water production temperature was usually fixed to 60¿C. The obtained results have shown that COP depends strongly on subcooling. In the nominal condition (20¿C/15¿C for the inlet/outlet water temperature at the evaporator and 10ºC/60ºC for the inlet/outlet water temperature in the heat sink), the optimum subcooling was about 43 K with a heating COP of 5.61, which is about 31% higher than the same cycle working without subcooling. Furthermore, the system with subcooling has been proved experimentally as being capable of producing water up to 90¿C and has shown a higher COP than some CO2 commercial products (catalog data reference). / Las bombas de calor han sido identificadas como una alternativa eficaz a las calderas tradicionales para la producción de agua caliente sanitaria (ACS). El elevado salto de temperatura del agua que normalmente tiene lugar en esta aplicación (por lo general de 10ºC a 60ºC) ha condicionado el tipo de soluciones que se utilizan. Por un lado, los ciclos transcríticos han sido considerados como una de las mejores soluciones para trabajar con los elevados saltos de temperatura del agua. Sin embargo, el rendimiento de la bomba de calor transcrítica con CO2 es bastante dependiente de la temperatura de entrada del agua, que en muchos casos está por encima de los 10¿C. Además, el rendimiento depende en gran medida de la presión de descarga, la cual necesita ser controlada con el fin de trabajar en el punto óptimo en cualquier condición externa. Por otra parte, para los sistemas subcríticos, el subenfriamiento parece ser crítico para el buen funcionamiento de la bomba de calor cuando se trabaja con elevados saltos de temperatura del agua, pero no hay ningún trabajo publicado en el que optimicen el subenfriamiento para la aplicación de ACS en estos sistemas. Por lo tanto, los sistemas subcríticos requieren de un estudio sistemático para buscar el subcooling óptimo y maximizar el COP en función de las condiciones externas, de la misma forma que se ha hecho para la presión de descarga en los ciclos transcríticos.
El objetivo de esta tesis es investigar el papel del subenfriamiento en el rendimiento de una bomba de calor trabajando con Propano para la producción de ACS, en la aplicación de recuperación de calor de cualquier fuente de agua (agua- agua). Dos enfoques diferentes para superar el alto grado de subenfriamiento fueron diseñados y construidos para ponerlos a prueba en el laboratorio:
1) El subenfriamiento se hace en el condensador: La carga activa de refrigerante del sistema se controla con una válvula de estrangulación. De esta manera, el subenfriamiento puede ser controlado de forma independiente a cualquier condición externa.
2) El subenfriamiento se hace en un intercambiador de calor separado, el subenfriadador. El subenfriamiento no se controla, este depende de la condición externa y de la transferencia de calor en el subenfriadador.
Las bombas de calor se ensayaron a diferentes temperaturas del agua a la entrada del evaporador (10ºC a 35ºC) y entrada del condensador (10ºC a 55ºC), mientras que la temperatura de producción de agua, normalmente, se fija a 60¿C. Los resultados obtenidos han demostrado que el COP depende mucho del subenfriamiento. En las condiciones nominales (20ºC/15ºC para la temperatura del agua de entrada/salida en el evaporador y 10ºC/60ºC para la temperatura del agua de entrada/salida en el condensador), el subenfriamiento óptimo fue aproximadamente de 43 K con un COP de calentamiento de 5,61, que es alrededor del 31% más alto que el mismo ciclo trabajando sin subenfriamiento. Además, el sistema con subenfriamiento ha probado de forma experimental, que es capaz de producir agua hasta los 90ºC, y ha mostrado un COP más alto que algunos productos comerciales que trabajan con CO2 (datos de referencia del catálogo). / Les bombes de calor han estat identificades com una alternativa eficaç a les calderes tradicionals per a la producció d'aigua calenta sanitària (ACS). L'elevat salt de temperatura de l'aigua que normalment té lloc en aquesta aplicació (en general de 10ºC a 60ºC) ha condicionat el tipus de solucions que s'utilitzen. Per una banda, els cicles transcrítics s'han considerat com una de les millors solucions per tal de treballar amb els elevats salts de temperatura de l'aigua. No obstant això, el rendiment de la bomba de calor transcrítica amb CO2 és bastant dependent de la temperatura d'entrada de l'aigua, que en molts casos està per damunt de 10¿C. A més, el rendiment depèn en gran mesura de la pressió de descarrega, la qual necessita ser controlada per tal de treballar en el punt òptim a qualsevol condició externa. Per altra banda, per als sistemes subcrítics, el sub-refredament sembla ser crític per al funcionament de la bomba de calor quan es treballa amb elevats salts de temperatura de l'aigua, però no hi ha cap treball publicat en el qual optimitzen el sub-refredament per a l'aplicació d'ACS en aquests sistemes. Per tant, els sistemes subcrítics requereixen d'un estudi sistemàtic per tal de buscar el subcooling òptim i maximitzar el COP en funció de les condicions externes, en la mateixa forma que s'ha fet per la pressió de descarrega en els cicles transcrítics.
L'objectiu d'aquesta tesi és investigar el paper del sub-refredament en el rendiment d'una bomba de calor treballant amb Propà per a la producció d'ACS, en l'aplicació de recuperació de calor de qualsevol font d'aigua (aigua-aigua). Dos enfocaments diferents per tal de superar l'alt grau de sub-refredament van ser dissenyats i construïts per posar-los a prova en el laboratori:
1) El sub-refredament es fa en el condensador: La càrrega activa de refrigerant del sistema es controla amb una vàlvula d'estrangulació. D'aquesta manera, el sub-refredament pot ser controlat de forma independent en qualsevol condició externa.
2) El sub-refredament es fa en un intercanviador de calor separat, el sub-refredador. El sub-refredament no es controla, este depèn de la condició externa i de la transferència de calor al sub-refredador.
Les bombes de calor es van assajar a diferents temperatures de l'aigua a l'entrada de l'evaporador (10ºC a 35ºC) i a l'entrada del condensador (10ºC a 55ºC), mentre que la temperatura de producció d'aigua, normalment, es fixa a 60¿C. Els resultats obtinguts han demostrat que el COP depèn molt del sub-refredament. En les condicions nominals (20ºC/15ºC per a la temperatura de l'aigua d'entrada/eixida a l'evaporador i 10ºC/60ºC per a la temperatura de l'aigua d'entrada/eixida en el condensador), el sub-refredament òptim és aproximadament de 43 K amb un COP d'escalfament de 5,61, que és al voltant del 31% més alt que el mateix cicle treballant sense sub-refredament. A més, el sistema amb sub-refredament ha provat de forma experimental, que és capaç de produir aigua fins als 90ºC, i ha mostrat un COP més alt que alguns productes comercials que treballen amb CO2 (dades de referència del catàleg). / Pitarch I Mocholí, M. (2017). High capacity heat pump development for sanitary hot water production [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/81858
|
Page generated in 0.0423 seconds