• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seleção dinâmica de classificadores baseada em filtragem e em distância adaptativa

ALMEIDA, Henrique Alexandre de Menezes Sabino 15 August 2014 (has links)
Submitted by Luiz Felipe Barbosa (luiz.fbabreu2@ufpe.br) on 2015-03-09T14:50:57Z No. of bitstreams: 2 DISSERTAÇÃO Henrique Alexandre de Menezes Sabino.pdf: 6700092 bytes, checksum: 8c6bc8de7d1a8e7ec2a85b2753260399 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-09T14:50:57Z (GMT). No. of bitstreams: 2 DISSERTAÇÃO Henrique Alexandre de Menezes Sabino.pdf: 6700092 bytes, checksum: 8c6bc8de7d1a8e7ec2a85b2753260399 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2014-08-15 / Em aprendizagem de máquina, uma das dificuldades mais recorrentes é a escolha do classificador que melhor resolve um determinado problema. Devido a isso, muitos estudos mostraram que problemas de classificação têm maiores taxas de acerto quando classificadores são combinados ao invés de apenas um classificador individual. A Seleção Dinâmica é uma estratégia para a combinação de múltiplos classificadores que usa a região de competência, no qual acredita-se que um subconjunto de classificadores seja mais competente para classificar um dado padrão de consulta. A abordagem tradicional de seleção dinâmica é composta por três fases: Superprodução, Região de Competência e Seleção Dinâmica. Vários métodos têm sidos propostos na fase de Superprodução, responsável pela geração de classificadores, e na fase de Seleção Dinâmica, responsável pela heurística de seleção, porém pouco foi estudado sobre a fase de Região de Competência. A fase de Região de Competência é responsável pela seleção dos padrões vizinhos do padrão de consulta, e é a principal informação para a seleção dos classificadores através da heurística de seleção. Devido à importância da região de competência, este trabalho propõe uma abordagem para seleção dinâmica que visa melhorar a definição da região de competência, tendo como hipótese que uma melhor definição dessa região resulta em um melhor desempenho de seleção dinâmica. Isso é realizado através de duas técnicas: filtragem de instâncias e distância adaptativa. Essas técnicas têm como finalidade a redução de padrões indesejáveis, e portanto são responsáveis por melhorar a qualidade da região de competência. Os experimentos foram realizados em 17 bases de dados utilizando 6 métodos diferentes de seleção dinâmica de classificadores. Os resultados mostraram que a abordagem proposta melhorou a taxa de acerto da seleção dinâmica, em relação a abordagem tradicional, em 10 bases com diferenças estatisticamente significativas, e em 5 dos 6 métodos de seleção dinâmica. No trabalho, também foi analisada a influência dos componentes do sistema de seleção dinâmica, e as descrições das bases de dados que influenciam a diferença dos resultados entre a abordagem proposta e a abordagem tradicional. Os resultados dessas análises mostraram que o método de seleção dinâmica e o classificador base são os componentes do sistema de seleção dinâmica que melhor determinam a taxa de acerto, e que o número de dimensões e o número de classes são os fatores que mais contribuem para a diferença de resultados entre as abordagens, proposta e tradicional.

Page generated in 0.0707 seconds