• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparação de métodos de estimação para problemas com colinearidade e/ou alta dimensionalidade (p > n ) / Comparison of estimation methods for problems with collinear and/or high dimensionality (p > n)

Casagrande, Marcelo Henrique 29 April 2016 (has links)
Este trabalho apresenta um estudo comparativo do poder de predição de quatro métodos de regressão adequados para situações nas quais os dados, dispostos na matriz de planejamento, apresentam sérios problemas de multicolinearidade e/ou de alta dimensionalidade, em que o número de covariáveis é maior do que o número de observações. No presente trabalho, os métodos abordados são: regressão por componentes principais, regressão por mínimos quadrados parciais, regressão ridge e LASSO. O trabalho engloba simulações, em que o poder preditivo de cada uma das técnicas é avaliado para diferentes cenários definidos por número de covariáveis, tamanho de amostra e quantidade e intensidade de coeficientes (efeitos) significativos, destacando as principais diferenças entre os métodos e possibilitando a criação de um guia para que o usuário possa escolher qual metodologia usar com base em algum conhecimento prévio que o mesmo possa ter. Uma aplicação em dados reais (não simulados) também é abordada. / This paper presents a comparative study of the predictive power of four suitable regression methods for situations in which data, arranged in the planning matrix, are very poorly multicolinearity and / or highdimensionality, wherein the number of covariatesis greater the number of observations. In this study, the methods discussed are: principal component regression,partial least squares regression,ridge regression and LASSO. The work includes simulations, where in the predictive power of each of the techniques is evaluated for different scenarios defined by the number of covariates, sample size and quantity and intensity ratios (effects) significant, high lighting the main dffierences between the methods and allowing for the creating a guide for the user to choose which method to use based on some prior knowledge that it may have. An applicationon real data (not simulated) is also addressed.
2

Comparação de métodos de estimação para problemas com colinearidade e/ou alta dimensionalidade (p > n)

Casagrande, Marcelo Henrique 29 April 2016 (has links)
Submitted by Bruna Rodrigues (bruna92rodrigues@yahoo.com.br) on 2016-10-06T11:48:12Z No. of bitstreams: 1 DissMHC.pdf: 1077783 bytes, checksum: c81f777131e6de8fb219b8c34c4337df (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T13:58:41Z (GMT) No. of bitstreams: 1 DissMHC.pdf: 1077783 bytes, checksum: c81f777131e6de8fb219b8c34c4337df (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T13:58:47Z (GMT) No. of bitstreams: 1 DissMHC.pdf: 1077783 bytes, checksum: c81f777131e6de8fb219b8c34c4337df (MD5) / Made available in DSpace on 2016-10-20T13:58:52Z (GMT). No. of bitstreams: 1 DissMHC.pdf: 1077783 bytes, checksum: c81f777131e6de8fb219b8c34c4337df (MD5) Previous issue date: 2016-04-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / This paper presents a comparative study of the predictive power of four suitable regression methods for situations in which data, arranged in the planning matrix, are very poorly multicolinearity and / or high dimensionality, wherein the number of covariates is greater the number of observations. In this study, the methods discussed are: principal component regression, partial least squares regression, ridge regression and LASSO. The work includes simulations, wherein the predictive power of each of the techniques is evaluated for di erent scenarios de ned by the number of covariates, sample size and quantity and intensity ratios (e ects) signi cant, highlighting the main di erences between the methods and allowing for the creating a guide for the user to choose which method to use based on some prior knowledge that it may have. An application on real data (not simulated) is also addressed. / Este trabalho apresenta um estudo comparativo do poder de predi c~ao de quatro m etodos de regress~ao adequados para situa c~oes nas quais os dados, dispostos na matriz de planejamento, apresentam s erios problemas de multicolinearidade e/ou de alta dimensionalidade, em que o n umero de covari aveis e maior do que o n umero de observa c~oes. No presente trabalho, os m etodos abordados s~ao: regress~ao por componentes principais, regress~ao por m nimos quadrados parciais, regress~ao ridge e LASSO. O trabalho engloba simula c~oes, em que o poder preditivo de cada uma das t ecnicas e avaliado para diferentes cen arios de nidos por n umero de covari aveis, tamanho de amostra e quantidade e intensidade de coe cientes (efeitos) signi cativos, destacando as principais diferen cas entre os m etodos e possibilitando a cria c~ao de um guia para que o usu ario possa escolher qual metodologia usar com base em algum conhecimento pr evio que o mesmo possa ter. Uma aplica c~ao em dados reais (n~ao simulados) tamb em e abordada

Page generated in 0.0404 seconds