Spelling suggestions: "subject:"degression imputation"" "subject:"aregression imputation""
1 |
Imputation en présence de données contenant des zérosNambeu, Christian O. 12 1900 (has links)
L’imputation simple est très souvent utilisée dans les enquêtes pour compenser
pour la non-réponse partielle. Dans certaines situations, la variable nécessitant
l’imputation prend des valeurs nulles un très grand nombre de fois. Ceci est très
fréquent dans les enquêtes entreprises qui collectent les variables économiques.
Dans ce mémoire, nous étudions les propriétés de deux méthodes d’imputation
souvent utilisées en pratique et nous montrons qu’elles produisent des estimateurs
imputés biaisés en général. Motivé par un modèle de mélange, nous proposons
trois méthodes d’imputation et étudions leurs propriétés en termes de biais.
Pour ces méthodes d’imputation, nous considérons un estimateur jackknife de la
variance convergent vers la vraie variance, sous l’hypothèse que la fraction de
sondage est négligeable. Finalement, nous effectuons une étude par simulation
pour étudier la performance des estimateurs ponctuels et de variance en termes
de biais et d’erreur quadratique moyenne. / Single imputation is often used in surveys to compensate for item nonresponse.
In some cases, the variable requiring imputation contains a large amount
of zeroes. This is especially frequent in business surveys that collect economic
variables. In this thesis, we study the properties of two imputation procedures
frequently used in practice and show that they lead to biased estimators, in general.
Motivated by a mixture regression model, we then propose three imputation
procedures and study their properties in terms of bias. For the proposed imputation
procedures, we consider a jackknife variance estimator that is consistent
for the true variance, provided the overall sampling fraction is negligible. Finally,
we perform a simulation study to evaluate the performance of point and variance
estimators in terms of relative bias and mean square error.
|
2 |
Imputation en présence de données contenant des zérosNambeu, Christian O. 12 1900 (has links)
L’imputation simple est très souvent utilisée dans les enquêtes pour compenser
pour la non-réponse partielle. Dans certaines situations, la variable nécessitant
l’imputation prend des valeurs nulles un très grand nombre de fois. Ceci est très
fréquent dans les enquêtes entreprises qui collectent les variables économiques.
Dans ce mémoire, nous étudions les propriétés de deux méthodes d’imputation
souvent utilisées en pratique et nous montrons qu’elles produisent des estimateurs
imputés biaisés en général. Motivé par un modèle de mélange, nous proposons
trois méthodes d’imputation et étudions leurs propriétés en termes de biais.
Pour ces méthodes d’imputation, nous considérons un estimateur jackknife de la
variance convergent vers la vraie variance, sous l’hypothèse que la fraction de
sondage est négligeable. Finalement, nous effectuons une étude par simulation
pour étudier la performance des estimateurs ponctuels et de variance en termes
de biais et d’erreur quadratique moyenne. / Single imputation is often used in surveys to compensate for item nonresponse.
In some cases, the variable requiring imputation contains a large amount
of zeroes. This is especially frequent in business surveys that collect economic
variables. In this thesis, we study the properties of two imputation procedures
frequently used in practice and show that they lead to biased estimators, in general.
Motivated by a mixture regression model, we then propose three imputation
procedures and study their properties in terms of bias. For the proposed imputation
procedures, we consider a jackknife variance estimator that is consistent
for the true variance, provided the overall sampling fraction is negligible. Finally,
we perform a simulation study to evaluate the performance of point and variance
estimators in terms of relative bias and mean square error.
|
3 |
Inférence doublement robuste en présence de données imputées dans les enquêtesPicard, Frédéric 02 1900 (has links)
L'imputation est souvent utilisée dans les enquêtes pour traiter la non-réponse partielle. Il est bien connu que traiter les
valeurs imputées comme des valeurs observées entraîne une
sous-estimation importante de la variance des estimateurs
ponctuels. Pour remédier à ce problème, plusieurs méthodes
d'estimation de la variance ont été proposées dans la littérature,
dont des méthodes adaptées de rééchantillonnage telles que le
Bootstrap et le Jackknife. Nous définissons le concept de
double-robustesse pour l'estimation ponctuelle et de variance
sous l'approche par modèle de non-réponse et l'approche par modèle
d'imputation. Nous mettons l'emphase sur l'estimation de la
variance à l'aide du Jackknife qui est souvent utilisé dans la
pratique. Nous étudions les propriétés de différents estimateurs
de la variance à l'aide du Jackknife pour l'imputation par la
régression déterministe ainsi qu'aléatoire. Nous nous penchons
d'abord sur le cas de l'échantillon aléatoire simple. Les cas de
l'échantillonnage stratifié et à probabilités inégales seront
aussi étudiés. Une étude de simulation compare plusieurs méthodes
d'estimation de variance à l'aide du Jackknife en terme de biais
et de stabilité relative quand la fraction de sondage n'est pas
négligeable. Finalement, nous établissons la normalité
asymptotique des estimateurs imputés pour l'imputation par
régression déterministe et aléatoire. / Imputation is often used in surveys to treat item nonresponse. It
is well known that treating the imputed values as observed values
may lead to substantial underestimation of the variance of the
point estimators. To overcome the problem, a number of variance
estimation methods have been proposed in the literature, including
appropriate versions of resampling methods such as the jackknife
and the bootstrap. We define the concept of doubly robust point
and variance estimation under the so-called nonresponse and
imputation model approaches. We focus on jackknife variance
estimation, which is widely used in practice. We study the
properties of several jackknife variance estimators under both
deterministic and random regression imputation. We first consider
the case of simple random sampling without replacement. The case
of stratified simple random sampling and unequal probability
sampling is also considered. A limited simulation study compares
various jackknife variance estimators in terms of bias and
relative stability when the sampling fraction is not negligible.
Finally, the asymptotic normality of imputed estimator is
established under both deterministic and random regression
imputation.
|
4 |
Inférence doublement robuste en présence de données imputées dans les enquêtesPicard, Frédéric 02 1900 (has links)
L'imputation est souvent utilisée dans les enquêtes pour traiter la non-réponse partielle. Il est bien connu que traiter les
valeurs imputées comme des valeurs observées entraîne une
sous-estimation importante de la variance des estimateurs
ponctuels. Pour remédier à ce problème, plusieurs méthodes
d'estimation de la variance ont été proposées dans la littérature,
dont des méthodes adaptées de rééchantillonnage telles que le
Bootstrap et le Jackknife. Nous définissons le concept de
double-robustesse pour l'estimation ponctuelle et de variance
sous l'approche par modèle de non-réponse et l'approche par modèle
d'imputation. Nous mettons l'emphase sur l'estimation de la
variance à l'aide du Jackknife qui est souvent utilisé dans la
pratique. Nous étudions les propriétés de différents estimateurs
de la variance à l'aide du Jackknife pour l'imputation par la
régression déterministe ainsi qu'aléatoire. Nous nous penchons
d'abord sur le cas de l'échantillon aléatoire simple. Les cas de
l'échantillonnage stratifié et à probabilités inégales seront
aussi étudiés. Une étude de simulation compare plusieurs méthodes
d'estimation de variance à l'aide du Jackknife en terme de biais
et de stabilité relative quand la fraction de sondage n'est pas
négligeable. Finalement, nous établissons la normalité
asymptotique des estimateurs imputés pour l'imputation par
régression déterministe et aléatoire. / Imputation is often used in surveys to treat item nonresponse. It
is well known that treating the imputed values as observed values
may lead to substantial underestimation of the variance of the
point estimators. To overcome the problem, a number of variance
estimation methods have been proposed in the literature, including
appropriate versions of resampling methods such as the jackknife
and the bootstrap. We define the concept of doubly robust point
and variance estimation under the so-called nonresponse and
imputation model approaches. We focus on jackknife variance
estimation, which is widely used in practice. We study the
properties of several jackknife variance estimators under both
deterministic and random regression imputation. We first consider
the case of simple random sampling without replacement. The case
of stratified simple random sampling and unequal probability
sampling is also considered. A limited simulation study compares
various jackknife variance estimators in terms of bias and
relative stability when the sampling fraction is not negligible.
Finally, the asymptotic normality of imputed estimator is
established under both deterministic and random regression
imputation.
|
Page generated in 0.1262 seconds