Spelling suggestions: "subject:"regularly varying functions"" "subject:"egularly varying functions""
1 |
Estimation des limites d'extrapolation par les lois de valeurs extrêmes. Application à des données environnementales / Estimation of extrapolation limits based on extreme-value distributions.Application to environmental data.Albert, Clément 17 December 2018 (has links)
Cette thèse se place dans le cadre de la Statistique des valeurs extrêmes. Elle y apporte trois contributions principales. L'estimation des quantiles extrêmes se fait dans la littérature en deux étapes. La première étape consiste à utiliser une approximation des quantiles basée sur la théorie des valeurs extrêmes. La deuxième étape consiste à estimer les paramètres inconnus de l'approximation en question, et ce en utilisant les valeurs les plus grandes du jeu de données. Cette décomposition mène à deux erreurs de nature différente, la première étant une erreur systémique de modèle, dite d'approximation ou encore d'extrapolation, la seconde consituant une erreur d'estimation aléatoire. La première contribution de cette thèse est l'étude théorique de cette erreur d'extrapolation mal connue.Cette étude est menée pour deux types d'estimateur différents, tous deux cas particuliers de l'approximation dite de la "loi de Pareto généralisée" : l'estimateur Exponential Tail dédié au domaine d'attraction de Gumbel et l'estimateur de Weissman dédié à celui de Fréchet.Nous montrons alors que l'erreur en question peut s'interpréter comme un reste d'ordre un d'un développement de Taylor. Des conditions nécessaires et suffisantes sont alors établies de telle sorte que l'erreur tende vers zéro quand la taille de l'échantillon augmente. De manière originale, ces conditions mènent à une division du domaine d'attraction de Gumbel en trois parties distinctes. En comparaison, l'erreur d'extrapolation associée à l'estimateur de Weissman présente un comportement unifié sur tout le domaine d'attraction de Fréchet. Des équivalents de l'erreur sont fournis et leur comportement est illustré numériquement. La deuxième contribution est la proposition d'un nouvel estimateur des quantiles extrêmes. Le problème est abordé dans le cadre du modèle ``log Weibull-tail'' généralisé, où le logarithme de l'inverse du taux de hasard cumulé est supposé à variation régulière étendue. Après une discussion sur les conséquences de cette hypothèse, nous proposons un nouvel estimateur des quantiles extrêmes basé sur ce modèle. La normalité asymptotique dudit estimateur est alors établie et son comportement en pratique est évalué sur données réelles et simulées.La troisième contribution de cette thèse est la proposition d'outils permettant en pratique de quantifier les limites d'extrapolation d'un jeu de données. Dans cette optique, nous commençons par proposer des estimateurs des erreurs d'extrapolation associées aux approximations Exponential Tail et Weissman. Après avoir évalué les performances de ces estimateurs sur données simulées, nous estimons les limites d'extrapolation associées à deux jeux de données réelles constitués de mesures journalières de variables environnementales. Dépendant de l'aléa climatique considéré, nous montrons que ces limites sont plus ou moins contraignantes. / This thesis takes place in the extreme value statistics framework. It provides three main contributions to this area. The extreme quantile estimation is a two step approach. First, it consists in proposing an extreme value based quantile approximation. Then, estimators of the unknown quantities are plugged in the previous approximation leading to an extreme quantile estimator.The first contribution of this thesis is the study of this previous approximation error. These investigations are carried out using two different kind of estimators, both based on the well-known Generalized Pareto approximation: the Exponential Tail estimator dedicated to the Gumbel maximum domain of attraction and the Weissman estimator dedicated to the Fréchet one.It is shown that the extrapolation error can be interpreted as the remainder of a first order Taylor expansion. Necessary and sufficient conditions are then provided such that this error tends to zero as the sample size increases. Interestingly, in case of the so-called Exponential Tail estimator, these conditions lead to a subdivision of Gumbel maximum domain of attraction into three subsets. In constrast, the extrapolation error associated with Weissmanestimator has a common behavior over the whole Fréchet maximum domain of attraction. First order equivalents of the extrapolation error are thenderived and their accuracy is illustrated numerically.The second contribution is the proposition of a new extreme quantile estimator.The problem is addressed in the framework of the so-called ``log-Generalized Weibull tail limit'', where the logarithm of the inverse cumulative hazard rate function is supposed to be of extended regular variation. Based on this model, a new estimator of extreme quantiles is proposed. Its asymptotic normality is established and its behavior in practice is illustrated on both real and simulated data.The third contribution of this thesis is the proposition of new mathematical tools allowing the quantification of extrapolation limits associated with a real dataset. To this end, we propose estimators of extrapolation errors associated with the Exponentail Tail and the Weissman approximations. We then study on simulated data how these two estimators perform. We finally use these estimators on real datasets to show that, depending on the climatic phenomena,the extrapolation limits can be more or less stringent.
|
2 |
Modélisation de la dépendance et estimation du risque agrégé / Dependence modelling and risk aggregation estimationCuberos, Andres 18 December 2015 (has links)
Cette thèse porte sur l'étude de la modélisation et estimation de la dépendance des portefeuilles de risques et l'estimation du risque agrégé. Dans le Chapitre 2, nous proposons une nouvelle méthode pour estimer les quantiles de haut niveau pour une somme de risques. Elle est basée sur l'estimation du rapport entre la VaR de la somme et la VaR du maximum des risques. Nous utilisons des résultats sur les fonctions à variation régulière. Nous comparons l'efficacité de notre méthode avec quelques estimations basées sur la théorie des valeurs extrêmes, sur plusieurs modèles. Notre méthode donne de bons résultats lors de l'approximation de la VaR à des niveaux élevés lorsque les risques sont fortement dépendants et au moins l'un des risques est à queue épaisse. Dans le Chapitre 3, nous proposons une procédure d'estimation pour la distribution d'un risque agrégé basée sur la copule échiquier. Elle permet d'obtenir de bonnes estimations à partir d'un petit échantillon de la loi multivariée et une connaissance complète des lois marginales. Cette situation est réaliste pour de nombreuses applications. Les estimations peuvent être améliorées en incluant dans la copule échiquier des informations supplémentaires (sur la loi d'un sous-vecteur ou sur des probabilités extrêmes). Notre approche est illustrée par des exemples numériques. Finalement, dans le Chapitre 4, nous proposons un estimateur de la mesure spectrale basé sur l'estimation à noyau de la densité de la mesure spectrale d'une distribution à variation régulière bivariée. Une extension de notre méthode permet d'estimer la mesure spectrale discrète. Certaines propriétés de convergence sont obtenues / This thesis comprises three essays on estimation methods for the dependence between risks and its aggregation. In the first essay we propose a new method to estimate high level quantiles of sums of risks. It is based on the estimation of the ratio between the VaR (or TVaR) of the sum and the VaR (or TVaR) of the maximum of the risks. We use results on regularly varying functions. We compare the efficiency of our method with classical ones, on several models. Our method gives good results when approximating the VaR or TVaR in high levels on strongly dependent risks where at least one of the risks is heavy tailed. In the second essay we propose an estimation procedure for the distribution of an aggregated risk based on the checkerboard copula. It allows to get good estimations from a (quite) small sample of the multivariate law and a full knowledge of the marginal laws. This situation is realistic for many applications. Estimations may be improved by including in the checkerboard copula some additional information (on the law of a sub-vector or on extreme probabilities). Our approach is illustrated by numerical examples. In the third essay we propose a kernel based estimator for the spectral measure density of a bivariate distribution with regular variation. An extension of our method allows to estimate discrete spectral measures. Some convergence properties are obtained
|
Page generated in 0.0891 seconds